query19

#$&*

course mth 173

Question: `qQuery problem 3.4.27 was 3.4.29 (3d edition 3.4.20) was 4.4.12 Derivative of `sqrt( (x^2*5^x)^3

What is the derivative of the given function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The function can be easily simplified to (x^2 * 5^x)^(3/2)

Then using the multiplication rule we can get the derivative of the first half of the equation as…

2x * 5^x + x^2 * ln5 * 5^x which simplifies to 5^x(2x + x^2ln5)

Then we can finish off the derivative using the power rule and square root rule to get

(3/2)(2x + x^2 ln5) * |x| * 5^(1/2x)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The function is `sqrt( (x^2 * 5^x)^3 ) = (x^2 * 5^x)^(3/2).

This is of form f(g(x)) with g(x) = x^2 * 5^x and f(z) = z^(3/2). Thus when you substitute you get f(g(x)) = g(x)^(3/2) = (x^2 * 5^x)^(3/2).

(x^2 * 5^x) ' = (x^2)' * 5^x + x^2 * (5^x) ' =

2x * 5^x + x^2 ln 5 * 5^x =

(2x + x^2 ln 5) * 5^x.

`sqrt(z^3) = z^(3/2), so using w(x) = f(g(x)) with f(z) = z^(3/2) and g(x) = x^2 * 5^x we get

w ' = (2x + x^2 ln 5) * 5^x * [3/2 (x^2 * 5^x)^(1/2)] = 3/2 (2x + x^2 ln 5) * | x | * 5^(1/2 x).

Note that sqrt(x^2) is | x |, not just x, since the square root must be positive and x might not be. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery problem 3.4.26 was 3.4.28 (3d edition 3.4.19) (was 4.4.20) derivative of 2^(5t-1).

What is the derivative of the given function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is a collection of two functions. The inner function is 5t-1 and the outer function is 2^x.

The derivative of the inner function is 5.

The derivative of the outer function is ln(2) * 2^x

Put together, the derivative of the total function is …

5 ln(2) * 2^(5t-1)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThis function is a composite. The inner function is g(x)=5t-1 and the outer function is f(z)=2^z.

f'(z)=ln(2) * 2^z.

g ' (x)=5

so

(f(g(t)) ' = g ' (t)f ' (g(t))=

5 ln(2) * 2^(5t-1).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q**** Query 3.4.67 was 3.4.68 (3d edition 3.4.56) y = k (x), y ' (1) = 2.

What is the derivative of k(2x) when x = 1/2?

What is the derivative of k(x+1) when x = 0?

{]What is the derivative of k(x/4) when x = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2k(2x) = 2k(2 * .5) = 2 * k’(1) = 2*2 = 4

K’(x+1) = k’(1) = 2

.25 * k’(x/4) = .25 * k’(1) = .25 * 2 = .5

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** We apply the Chain Rule:

( k(2x) ) ' = (2x) ' * k'(2x) = 2 k(2x).

When x = 1/2 we have 2x = 1.

k ' (1) = y ' (1) = 2 so

when x = 1/2

( k(2x) ) ' = 2 k(2 * 1/2) = 2 * k'(1) = 2 * 2 = 4.

(k(x+1)) ' = (x+1)' k ' (x+1) = k ' (x+1) so

when x = 0 we have

(k(x+1) ) ' = k ' (x+1) = k ' (1) = 2

(k(x/4)) ' = (x/4)' k'(x/4) = 1/4 * k'(x/4) so when x = 4 we have

(k(x/4))' = 1/4 * k'(x/4) = 1/4 k'(4/4) = 1/4 * 2 = 1/2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery 3.4.81 (3d edition 3.4.68). Q = Q0 e^(-t/(RC)). I = dQ/dt.

Show that Q(t) and I(t) both have the same time constant.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Using the chain rule we can see that…

E^(-t/(RC))’ = (-t/(RC))’ * e^(-t/(RC)) = -1/(RC) * e^(-t/(RC))

‘dQ/’dt = -Q0/(RC) * e^(-t/(RC))

As you can see, both functions are basically identical, specifically the e^(-t*(RC)). Making the constant for time be the same for both of these.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** We use the Chain Rule.

(e^(-t/(RC)))' = (-t/(RC))' * e^(-t/(RC)) = -1/(RC) * e^(-t/(RC)).

So dQ/dt = -Q0/(RC) * e^(-t/(RC)).

Both functions are equal to a constant factor multiplied by e^(-t/(RC)).

The time constant for both functions is therefore identical, and equal to RC. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery problem 3.5.5 (unchanged since 3d edition) (formerly 4.5.6). What is the derivative of sin(3x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is a composite function. Inner function of 3x, outer function of sin(z).

The chain rule can be used for this derivative, to give us 3 * sin’(z)

The full derivative is 3 * cos(3x)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** sin(3x) is the composite of g(x) = 3x, which is the 'inner' function (the first function that operates on the variable x) and the 'outer' function f(z) = sin(z).

Thus f(g(x)) = sin(g(x)) = sin(3x).

The derivative is (f (g(x) ) ' = g ' (x) * f' ( g(x) ).

g ' (x) = (3x) ' = 3 * x ' = 3 ', and

f ' (z) = (sin(z) ) ' = cos(z).

So the derivative is [ sin(3x) ] ' = ( f(g(x) ) ' = g ' (x) * f ' (g(x) ) = 3 * cos(3x). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery problem 3.5.50 was 3.5.48 (3d edition 3.5.50) (formerly 4.5.36). Give the equations of the tangent lines to graph of y = sin(x) at x = 0 and at `pi/3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X = 0 then y = 0 and y ‘ = cos(0) = 1.

So the line tangent goes through (0,0) with a slope of 1. The equation for this line tangent would be (y - 0) = 1(x - 0) which simplifies to y = x.

X = ‘pi/3 then y = sin(‘pi/3) = ‘sqrt(3) / 2 and y’ = cos(‘pi/3) = .5

The tangent line has slope .5 and passes thru (`pi/3,`sqrt(3)/2).

The equation for this tangent is…

(y - `sqrt(3)/2) = .5 (x - `pi/3)

Y = .5x - ‘pi/6 + ‘sqrt(3)/2

Y = .5x + .25, roughly.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** At x = 0 we have y = 0 and y ' = cos(0) = 1.

The tangent line is therefore the line with slope 1 through (0,0), so the line is y - 0 = 1 ( x - 0) or just y = x.

At x = `pi/3 we have y = sin(`pi/3) = `sqrt(3) / 2 and y ' = cos(`pi/3) = .5.

Thus the tangent line has slope .5 and passes thru (`pi/3,`sqrt(3)/2), so its equation is

y - `sqrt(3)/2 = .5 (x - `pi/3)

y = .5 x - `pi/6 + `sqrt(3)/2. Approximating:

y - .87 = .5 x - .52. So

y = .5 x + .25, approx.

Our approximation to sin(`pi/6), based on the first tangent line:

The first tangent line is y = x. So the approximation at x = `pi / 6 is

y = `pi / 6 = 3.14 / 6 = .52, approximately.

Our approximation to sin(`pi/6), based on the second tangent line, is:

y = .5 * .52 + .34 = .60.

`pi/6 is equidistant from x=0 and x=`pi/3, so we might expect the accuracy to be the same whichever point we use.

The actual value of sin(`pi/6) is .5. The approximation based on the tangent line at x = 0 is .52, which is much closer to .5 than the .60 based on the tangent line at x = `pi/3.

The reason for this isn't too difficult to see. The slope is changing more quickly around x = `pi/3 than around x = 0. Thus the tangent line will move more rapidly away from the actual function near x = `pi/3 than near x = 0. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery 3.5.34 (3d edition 3.5.40). Der of sin(sin x + cos x)

What is the derivative of the given function and how did you find it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Like many of the above problems, this is a composite function.

Inner function is sin(x) + cos(x)

Outer function is sin(z).

The inner derivative is cos(x) - sin(x).

The derivative of the outer function is cos(z).

This makes the full derivative equal to the inner derivative * outer derivative.

(cos(x) - sin(x)) * cos(sin(x) + cos(x)).

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe function y = sin( sin(x) + cos(x) ) is the composite of g(x) = sin(x) + cos(x) and f(z) = sin(z).

The derivative of the composite is g ' (x) * f ' (g(x) ).

g ' (x) = (sin(x) + cos(x) ) ' = cos(x) - sin(x).

f ' (z) = sin(z) ' = cos(z).

So g ' (x) * f ' (g(x)) = ( cos(x) - sin(x) ) * cos( sin(x) + cos(x) ).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks good. Let me know if you have any questions. &#