Query 11

#$&*

course 272

10/24 6:15pm

011. `query 11

*********************************************

Question:

5.5.4 asks for an n = 4 midpoint-rule approximation to the integral of 1 - x^2 on the interval [-1, 1].

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1 - x^2 n= 4 interval (-1, 1)

width = (1- -1) = 2 / n = 2/4 = ½

intervals: (-1, -.5) (-.5, 0) (0,.5) (.5, 1)

midpoints:

(-1+ -.5) / 2 = -.75

(-.5 + 0) /2 = -.25

(0+.5) / 2 = .25

(.5 + 1) / 2 = .75

1 - x^2

f(-.75) = 1 - (.75)^2 =.4375 f(-.25) =1 - (-.25)^2 = .9375 f(.25) = 1 - (.25)^2 = .9375 f(.75) = 1 - (.75)^2 = .4375

width * average height =

½ (.4375 + .9375 + .9375 + .4375) = ½ (2.75) =1.375

Exact integral:

Int (1 - x^2) dx = int (1) - int(x^2) =

Antiderivitave = x - (1/3x^2)

Evaluate at -1 and 1 :

x - (1/3(-1)^2) = -2/3 and x - (1/3(1)^2) = 2/3

(2/3)- (-2/3) = 4/3 = 1.33333

1.375 (estimate) is a tad higher than actual integral 1.3333.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Dividing [-1, 1] into four intervals each will have length ( 1 - (-1) ) / 4 = 1/2. The four intervals are therefore

[-1, -.5], [-.5, 0], [0, 5], [.5,1].

The midpoints are -.75, .25, .25, .75. You have to evaluate 1 - x^2 at each midpoint. You get y values .4375, .9375, .9375 and .4375. These values will give you the altitudes of the rectangles used in the midpoint approximation.

The width of each rectangle is the length 1/2 of the interval, so the areas of the rectangles will be 1/2 * .4375,1/2 * .9375, 1/2 * .9375 and 1/2 * .4375, or .21875, .46875, .46875, .21875.

Adding these areas we get total area 1.375.

The curve is concave down so the midpoints will give you values which are a little high. We confirm this by calculating the integral:

The exact integral is integral(1 - x^2, x from -1 to 1). An antiderivative is x - 1/3 x^2; evaluating from -1 to 1 we find that the antiderivative changes from -2/3 to 2/3, a change of 4/3 = 1.333. So the accurate integral is 4/3 = 1.333 and our estimate 1.375 is indeed a little high. ** DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q 5.6. 9 (was 5.6.12) (was 5.6.10 midpt rule n=4 for x^2-x^3 on [-1,0]

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x^2-x^3

n = 4

interval: (-1,0)

width = (0- -1) = -1 /n = -1/4 = .25

intervals: (-1, -.75) (-.75, -.5) (-.5, -.25) (-.25, 0)

midpoints:

(-1 + -.75)/2= -.875

(-.75+ -.5)/2 = -.625

(-.5+ -.25)/2= -.375

(-.25+ 0)/2 = -.125

x^2-x^3

f(-.827) = 1.435

f(-.625) = 0.634765

f(-.375)=. 193359

f(-.135)=. 17578

avg width * avg height =

¼ (1.435 + 0.634765+ .193359 + 0.17578) = .5703

Real integral:

Int x^2-x^3

= int(x^2)-int(x^3)

antiderivitive=(x^3 /3) - (x^4/4)

evaluate: 0 and -1

(0^3 /3) - (0^4/4) = 0

(-1^3 /3) - (-1^4/4) = -7/12

0- (-7/12) = 7/12 = .5833

actual integral is .13 higher than estimation

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The four intervals are (-1, -3/4), (-3/4, -1/2), (-1/2, -1/4) and (-1/4, 0); in decimal form these are (-1, -.75), (-.75, -.5), (-.5, -.25) and (-.25, 0).

The midpoints of these intervals are-7/8, -5/8, -3/8 and -1/8; in decimal form we get -.875, -.625, -.375, -.125.

The values of the rectangle heights at the midpoints are found by evaluating x^2 - x^3 at the midpoints; we get respectively 735/512, 325/512, 99/512 and 9/512, or in decimal form 1.435546875; 0.634765625; 0.193359375; 0.017578125.

The approximating rectangles each have width 1/4 or .25 so the areas arerespectively 735/2048 325/2048, 99/2048, 9/2048, or in decimal form 0.3588867187; 0.1586914062; 0.04833984375; 0.00439453125. The total area is (735 + 325 + 99 + 9) / 2048 = /2048 = 73/128, or in decimal form approximately .5703.

An antiderivative of the function is x^3 / 3 - x^4 / 4; evaluating from -1 to 0 we obtain 1/3 + 1/4 = 7/12 = .5833... . So the midpoint approximation is low by about .013 units. ** DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q Add comments on any surprises or insights you experienced as a result of this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I am very comfortable with the midpoint rule and like the strategy to check my answers and compare.

------------------------------------------------

Self-critique Rating: 3

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

&#Very good responses. Let me know if you have questions. &#