Query 18 

#$&*

course 272

11/19 8:30pm

018.

********************************************* Question: `qQuery problem 6.2.54 (7th edition 6.3.54) time for disease to spread to x individuals is 5010 integral(1/[ (x+1)(500-x) ]; x = 1 at t = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 5010 integral(1/[ (x+1)(500-x) ]; x = 1 at t = 0 = A/ (x+1) + B/ (500-x) = A(500-x) + B(x+1) = 1 A= 1/501 B=1/501 5010 int[(1/( 501(x+1))+ (1/(501(500-x)) ] = 10 [1/(x+1) + 1/(500-x)] t = ( 5010 int ([1/(x+1) + 1/(500-x)] , x ) 5010 int (1/(x+1)) + int(1/ (500-x)) t = 10 ( ln| x + 1| - ln|500 - x| + c 0 = 10 (ln |1+1| - ln |500-1| + c so c = 55.52 t = 10 ((ln |x+1| - ln |500-x| + 55.52) or 10 (ln |x+1| / |500-x| + 55.2 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: `a 1 / ( (x+1)(500-x) ) = A / (x+1) + B / (500-x) so A(500-x) + B(x+1) = 1 so A = 1 / 501 and B = 1/501. The integrand becomes 5010 [ 1 / (501 (x+1) ) + 1 / (501 (500 - x)) ] = 10 [ 1/(x+1) + 1 / (500 - x) ]. Thus we have t = INT(5010 ( 1 / (x+1) + 1 / (500 - x) ) , x). Since an antiderivative of 1/(x+1) is ln | x + 1 | and an antiderivative of 1 / (500 - x) is - ln | 500 - x | we obtain t = 10 [ ln (x+1) - ln (500-x) + c]. (for example INT (1 / (500 - x) dx) is found by first substituting u = 1 - x, giving du = -dx. The integral then becomes INT(-1/u du), giving us - ln | u | = - ln | 500 - x | ). We are given that x = 1 yields t = 0. Substituting x = 1 into the expression t = 10 [ ln (x+1) - ln (500-x) + c], and setting the result equal to 0, we get c = 5.52, appxox. So t = 10 [ ln (x+1) - ln (500-x) + 5.52] = 10 ln( (x+1) / (500 - x) ) + 55.2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: 3

********************************************* Question: `qHow long does it take for 75 percent of the population to become infected? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 75% of 500 people = 375 so x = 375 t = 10 (ln |375+1| / |500-375| + 55.2 = 66.2 confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 75% of the population of 500 is 375. Setting x = 375 we get t = 10 ln( (375+1) / (500 - 375) ) + 55.2 = 66.2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: 3

********************************************* Question: `qWhat integral did you evaluate to obtain your result? 5010 int(1/(x+1) + int(1/(500-x) &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: 3

********************************************* Question: `qHow many people are infected after 100 hours? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: t = 10 (ln |x+1| / |500-x| + 55.2 t - 55.2 = 10 (ln |x+1| / |500-x|) (t-55.2 / 10) = (ln |x+1| / |500-x|) e^(t-55.2 / 10) = (x+1) / (500-x) 500 e^(t-55.2 / 10) - x e^(t-55.2 / 10) = x + 1 or x + x e^(t-55.2 / 10)= 500 e^(t-55.2 / 10) - 1 x (1+ e^(t-55.2 / 10) = 500 e^(t-55.2 / 10) - 1 x = 500 e^(t-55.2 / 10) - 1/ (1+ e^(t-55.2 / 10) now we can plug in 100 for t x = 500 e^(100-55.2 / 10) - 1/ (1+ e^(100-55.2 / 10) x = 494.4 approx confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: `a t = 10 ln( (x+1) / (500 - x) ) + 55.2. To find x we solve this equation for x: 10 ln( (x+1) / (500 - x) ) = t - 55.2 so ln( (x+1) / (500 - x) ) = (t - 55.2 ) / 10. Exponentiating both sides we have (x+1) / (500 - x) = e^( (t-55.2) / 10 ). Multiplying both sides by 500 - x we have x + 1 = e^( (t-55.2) / 10 ) ( 500 - x) so x + 1 = 500 e^( (t-55.2) / 10 ) - x e^( (t-55.2) / 10 ). Rearranging we have x + x e^( (t-55.2) / 10 ) = 500 e^( (t-55.2) / 10 ) - 1. Factoring the left-hand side x ( 1 + e^( (t-55.2) / 10 ) ) = 500 e^( (t-55.2) / 10 ) - 1 so that x = (500 e^( (t-55.2) / 10 ) - 1) / ( 1 + e^( (t-55.2) / 10 ) ). Plugging t = 100 into this expression we actually get x = 494.4, approx. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ok ------------------------------------------------ Self-critique Rating: 3

********************************************* Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment. Nothing too surprising, feeling comfortable with this. "

Self-critique (if necessary): ------------------------------------------------ Self-critique rating:

********************************************* Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment. Nothing too surprising, feeling comfortable with this.

@& Very good. *@

Query 18 

#$&*

course 272

11/19 8:30pm

018.

*********************************************

Question: `qQuery problem 6.2.54 (7th edition 6.3.54) time for disease to spread to x individuals is 5010 integral(1/[ (x+1)(500-x) ]; x = 1 at t = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

5010 integral(1/[ (x+1)(500-x) ]; x = 1 at t = 0

= A/ (x+1) + B/ (500-x) = A(500-x) + B(x+1) = 1

A= 1/501 B=1/501

5010 int[(1/( 501(x+1))+ (1/(501(500-x)) ]

= 10 [1/(x+1) + 1/(500-x)]

t = ( 5010 int ([1/(x+1) + 1/(500-x)] , x )

5010 int (1/(x+1)) + int(1/ (500-x))

t = 10 ( ln| x + 1| - ln|500 - x| + c

0 = 10 (ln |1+1| - ln |500-1| + c so c = 55.52

t = 10 ((ln |x+1| - ln |500-x| + 55.52) or 10 (ln |x+1| / |500-x| + 55.2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a 1 / ( (x+1)(500-x) ) = A / (x+1) + B / (500-x) so

A(500-x) + B(x+1) = 1 so

A = 1 / 501 and B = 1/501.

The integrand becomes 5010 [ 1 / (501 (x+1) ) + 1 / (501 (500 - x)) ] = 10 [ 1/(x+1) + 1 / (500 - x) ].

Thus we have

t = INT(5010 ( 1 / (x+1) + 1 / (500 - x) ) , x).

Since an antiderivative of 1/(x+1) is ln | x + 1 | and an antiderivative of 1 / (500 - x) is - ln | 500 - x | we obtain

t = 10 [ ln (x+1) - ln (500-x) + c].

(for example INT (1 / (500 - x) dx) is found by first substituting u = 1 - x, giving du = -dx. The integral then becomes INT(-1/u du), giving us - ln | u | = - ln | 500 - x | ).

We are given that x = 1 yields t = 0. Substituting x = 1 into the expression t = 10 [ ln (x+1) - ln (500-x) + c], and setting the result equal to 0, we get c = 5.52, appxox.

So t = 10 [ ln (x+1) - ln (500-x) + 5.52] = 10 ln( (x+1) / (500 - x) ) + 55.2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qHow long does it take for 75 percent of the population to become infected?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

75% of 500 people = 375 so x = 375

t = 10 (ln |375+1| / |500-375| + 55.2 = 66.2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

75% of the population of 500 is 375. Setting x = 375 we get

t = 10 ln( (375+1) / (500 - 375) ) + 55.2 = 66.2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qWhat integral did you evaluate to obtain your result?

5010 int(1/(x+1) + int(1/(500-x)

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qHow many people are infected after 100 hours?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 10 (ln |x+1| / |500-x| + 55.2

t - 55.2 = 10 (ln |x+1| / |500-x|)

(t-55.2 / 10) = (ln |x+1| / |500-x|)

e^(t-55.2 / 10) = (x+1) / (500-x)

500 e^(t-55.2 / 10) - x e^(t-55.2 / 10) = x + 1 or

x + x e^(t-55.2 / 10)= 500 e^(t-55.2 / 10) - 1

x (1+ e^(t-55.2 / 10) = 500 e^(t-55.2 / 10) - 1

x = 500 e^(t-55.2 / 10) - 1/ (1+ e^(t-55.2 / 10)

now we can plug in 100 for t

x = 500 e^(100-55.2 / 10) - 1/ (1+ e^(100-55.2 / 10)

x = 494.4 approx

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a t = 10 ln( (x+1) / (500 - x) ) + 55.2. To find x we solve this equation for x:

10 ln( (x+1) / (500 - x) ) = t - 55.2 so

ln( (x+1) / (500 - x) ) = (t - 55.2 ) / 10. Exponentiating both sides we have

(x+1) / (500 - x) = e^( (t-55.2) / 10 ). Multiplying both sides by 500 - x we have

x + 1 = e^( (t-55.2) / 10 ) ( 500 - x) so

x + 1 = 500 e^( (t-55.2) / 10 ) - x e^( (t-55.2) / 10 ). Rearranging we have

x + x e^( (t-55.2) / 10 ) = 500 e^( (t-55.2) / 10 ) - 1. Factoring the left-hand side

x ( 1 + e^( (t-55.2) / 10 ) ) = 500 e^( (t-55.2) / 10 ) - 1 so that

x = (500 e^( (t-55.2) / 10 ) - 1) / ( 1 + e^( (t-55.2) / 10 ) ).

Plugging t = 100 into this expression we actually get x = 494.4, approx.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

Nothing too surprising, feeling comfortable with this.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

Nothing too surprising, feeling comfortable with this.

@&

Very good.

*@