Query 15

#$&*

course 272

11/19 8:30pm

015.

*********************************************

Question: `qQuery problem 6.1.6 (was 6.2.2) integrate x e^(-x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

U= x

du/dx = 1 so du=dx

dv = e^(-x)dx

v= int (e^(-x)dx) = -e^(-x)

uv - int(v du) = x(-e^(-x)) - int (-e^(-x)) dx

=x(-e^(-x) - e^(-x) + c

= -e^(-x) (-x - 1) + c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a We let

u = x

du = dx

dv = e^(-x)dx

v = -e^(-x)

Using u v - int(v du):

(x)(-e^(-x)) - int(-e^(-x)) dx

Integrate:

x(-e^(-x)) - (e^(-x)) + C

Factor out e^(-x):

e^(-x) (-x-1) + C.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery problem 6.1.7 (was 6.2.3) integrate x^2 e^(-x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Int (x^2 e^(-x))

U = x^2 du/dx = 2x du=2xdx dv = e^-x

v=int(e^(-x) = -e^(-x)

uv- int (v du) = -x^2e^(-x) - int((-e)^(-x) * 2xdx)

=-x^2e^(-x) + 2 int(-x(e^(-x)) dx

= -x^2e^(-x) + 2 (-x(e^(-x) - e^(-x) + c) (can factor out -e^-x)

=-e^(-x) (x^2 +2x + 2) + c

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a We perform two integrations by parts.

First we use

u=x^2

dv=e^-x)dx

v= -e^(-x)

to obtain

-x^(2)e^(-x) - int [ -e^(-x) * 2x dx] =-x^(2)e^(-x) +2int[xe^(-x) dx]

We then integrate x e^-x dx:

u=x

dv=e^(-x)dx

v= -e^(-x)

from which we obtain

-x e^(-x) - int(-e^(-x) dx) = -x e^(-x) - e^(-x) + C

Substituting this back into

-x^(2)e^(-x) +2int[xe^(-x) dx] we obtain

-x^(2)e^(-x) + 2 ( -x e^-x - e^-x + C) =

-e^(-x) * [x^(2) + 2x +2] + C.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qQuery problem 6.1.26 (was 6.2.18) integral of 1 / (x (ln(x))^3)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Int 1 / (x (ln(x))^3)

U = ln x du/dx = (1/x) du = (1/x) dx so

Int (1/u^3) * du = -1 / 2u^2 + C sub in for u so

= -1 / 2 (ln(x)^2) + C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Let u = ln(x) so that du = 1 / x dx. This gives you 1 / u^3 * du and the rest is straightforward:

1/u^3 is a power function so

int(1 / u^3 du) = -1 / (2 u^2) + c.

Substituting u = ln(x) we have

-1 / (2 ln(x)^2) + c.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qQuery problem 6.1.46 (was 6.2.32) (was 6.2.34) integral of ln(1+2x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

U = ln(1+2x) du/dx = 2/(1+2x) du = 2/(1+2x) dx

Dv= dx v = x

uv - int(v du)

= x ln(1+2x) - int (x (2/(1+2x)) dx

= x ln(1+2x) - 2 int (x / (1+2x)) dx

now w = (1+2x) dw = 2dx dx = dw/2 x = (w-1)/2

int (x/(1+2x) dx

= int ((w-1/2) / (w)) (dw/2) = int((1/4-1/4w) dw =

int ((w/4) - (1/4 lnw)

= 4 - (1/4 ln (1 +2x))

so x ln(1+2x) - 2 (2x/4 - (1/4 ln (1 + 2x))

= x ln(1+2x) + ln ((1+2x) / (2-x))

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Let

u = ln ( 1 + 2x)

du = 2 / (1 + 2x) dx

dv = dx

v = x.

You get

u v - int(v du) = x ln(1+2x) - int( x * 2 / (1+2x) ) =

x ln(1+2x) - 2 int( x / (1+2x) ).

The integral is done by substituting w = 1 + 2x, so dw = 2 dx and dx = dw/2, and x = (w-1)/2.

Thus x / (1+2x) dx becomes { [ (w-1)/2 ] / w } dw/2 = { 1/4 - 1/(4w) } dw.

Antiderivative is w/4 - 1/4 ln(w), which becomes (2x) / 4 - 1/4 ln(1+2x).

So x ln(1+2x) - 2 int( x / (1+2x) ) becomes x ln(1+2x) - 2 [ (2x) / 4 - 1/4 ln(1+2x) ] or

x ln(1+2x) + ln(1+2x)/2 - x.

Integrating from x = 0 to x = 1 we obtain the result .648 approx.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

ok

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

This query took me longer…once the problems are set up I am good to go but I could use some more practice from book making sure I get the correct values for u, v, etc.

------------------------------------------------

Self-critique Rating: 3

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good responses. Let me know if you have questions. &#