Assignment 0 Query

course Phy 232

ph2 query 0Most queries in this course will ask you questions about class notes, readings, text problems and experiments. Since the first two assignments have been lab-related, the first two queries are related to the those exercises. While the remaining queries in this course are in question-answer format, the first two will be in the form of open-ended questions. Interpret these questions and answer them as best you can.

Different first-semester courses address the issues of experimental precision, experimental error, reporting of results and analysis in different ways and at different levels. One purpose of these initial lab exercises is to familiarize your instructor with your work and you with the instructor 's expectations.

Comment on your experience with the three lab exercises you encountered in this assignment or in recent assignments.

*********************************************

Question: This question, related to the use of the TIMER program in an experimental situation, is posed in terms of a familiar first-semester system.

Suppose you use a computer timer to time a steel ball 1 inch in diameter rolling down a straight wooden incline about 50 cm long. If the computer timer indicates that on five trials the times of an object down an incline are 2.42sec, 2.56 sec, 2.38 sec, 2.47 sec and 2.31 sec, then to what extent do you think the discrepancies could be explained by each of the following:

• The lack of precision of the TIMER program.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think that the discrepancies between the times can not be attributed to the lack of precision of the TIMER program, because it is accurate to the last digit given, while the discrepancies between the times is at a greater order of magnitude.

#$&*

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

I think that this could make up a portion of the error, since it is dependent on human error, which is common.

#$&*

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

This should be zero percent of the discrepancy between the times, because mathematically, there should be know difference.

#$&*

• Differences in positioning the object prior to release.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

This could be a part of the error, because it is also dependent on human error.

#$&*

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think the discrepancies are explained by this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

This could be another significant portion of the discrepancies because it is difficult to consistently be accurate in this regard for humans and will likely result in human error.

#$&*

*********************************************

Question: How much uncertainty do you think each of the following would actually contribute to the uncertainty in timing a number of trials for the ball-down-an-incline lab?

• The lack of precision of the TIMER program.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

This should not contribute very much to the uncertainty of the results, because it is accurate to the last digit place.

#$&*

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

This probably contributes slightly more than the program itself, but not as much as others because it would likely only lead to a small amount of error.

#$&*

• Actual differences in the time required for the object to travel the same distance.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

This should not contribute to the uncertainty of the results, because there should never be any difference between the time required for an object to travel the same distance.

#$&*

• Differences in positioning the object prior to release.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

This could account for a portion of the error as well, since it is dependent on a human placing the ball exactly where it needs to be, which could cause some human error.

#$&*

• Human uncertainty in observing exactly when the object reached the end of the incline.

To what extent to you think this factor would contribute to the uncertainty?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

This is probably the most significant factor, and contributes the most to the uncertainty, because it is difficult for a human to watch the object and click the timer at the exact same time. There will likely be error in the delay from the human eye to brain to hand and also due to over anticipation.

#$&*

*********************************************

Question: What, if anything, could you do about the uncertainty due to each of the following? Address each specifically.

• The lack of precision of the TIMER program.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

For the lack of precision of the TIMER program, we could simply only use the significant digits reported by the program.

#$&*

• The uncertain precision of human triggering (uncertainty associated with an actual human finger on a computer mouse)

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

If the person using the program practiced a few times, and became comfortable enough that they could perform the task relatively consistently, and a number of trials were preformed, there should not be as much uncertainty due to this factor.

#$&*

• Actual differences in the time required for the object to travel the same distance.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

Nothing needs to be done about this factor, because it does not contribute to the uncertainty.

#$&*

• Differences in positioning the object prior to release.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

If a mark was made on the meter stick exactly where the ball is positioned before release it could help to increase the certainty for this portion of the experiment.

#$&*

• Human uncertainty in observing exactly when the object reached the end of the incline.

What do you think you could do about the uncertainty due to this factor?

your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv

If the same person performed this task each time, and practiced several times to get the hang of it, I think that it would reduce their potential for error, but there would probably still be some error involved.

#$&*

"

&#Good work. Let me know if you have questions. &#

#$&*