course Mth 158 6/7 10pm If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: * * ** Starting with (2x-3)/y we substitute x=-2 and y=3 to get (2*(-2) - 3)/3 = (-4-3)/3= -7/3. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&*OK ********************************************* Question: * R.2. 55 (was R.2.45) Evaluate for x = 3 and y = -2: | |4x| - |5y| | and explain how you got your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: ||4 *3 | - |5 * -2|| ||12| - |-10|| |12 – 10| | 2 | 2 confidence rating #$&*3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** Starting with | | 4x |- | 5y | | we substitute x=3 and y=-2 to get | | 4*3 | - | 5*-2 | | = | | 12 | - | -10 | | = | 12-10 | = | 2 | = 2. ** * R.2.64 (was R.2.54) Explain what values, if any, cannot be present in the domain of the expression (-9x^2 - x + 1) / (x^3 + x) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: X cannot be 0 or -1. -1^3 + 1 is -1 + 1, which would be 0. confidence rating #$&*2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** The denominator of this expression cannot be zero, since division by zero is undefined. Since x^3 + x factors into (x^2 + 1) ( x ) we see that x^3 + x = 0 is, and only if, either x^2 + 1 = 0 or x = 0. Since x^2 cannot be negative x^2 + 1 cannot be 0, so x = 0 is indeed the only value for which x^3 + x = 0. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ????I do not understand how -1 could be x. -1* -1 * -1 = -1, and -1 + 1 = 0. Or is my math flawed in some way????
.............................................
Given Solution: * * ** order of operations implies exponentiation before multiplication; the - in front of the 4 is not part of the 4 but is an implicit multiplication by -1. Thus only 4 is raised to the -2 power. Starting with the expression -4^(-2): Since a^-b = 1 / (a^b), we have 4^-2 = 1 / (4)^2 = 1 / 16. The - in front then gives us -4^(-2) = - ( 1/ 16) = -1/16. If the intent was to take -4 to the -2 power the expression would have been written (-4)^(-2).** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I did not carry the negative throughout the equation. ------------------------------------------------ Self-critique rating #$&* 3 ********************************************* Question: * Extra Problem. What is (3^-2 * 5^3) / (3^2 * 5) and how did you use the laws of exponents to get your result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (3^-2 * 5^3)/(3^2 * 5) First, you multiply the numerator and add the exponents, so you get 15
.............................................
Given Solution: Starting with (3^(-2)*5^3)/(3^2*5): Grouping factors with like bases we have 3^(-2)/3^2 * 5^3 / 5. Using the fact that a^b / a^c = a^(b-c) we get 3^(-2 -2) * 5^(3-1), which gives us 3^-4 * 5^2. Using a^(-b) = 1 / a^b we get (1/3^4) * 5^2. Simplifying we have (1/81) * 25 = 25/81. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ????I do not understand how we can ungroup the (3^(-2) *5^3).?????
.............................................
Given Solution: [ 5 x^-2 / (6 y^-2) ] ^ -3 = (5 x^-2)^-3 / (6 y^-2)^-3, since (a/b)^c = a^c / b^c. This simplifies to 5^-3 (x^-2)^-3 / [ 6^-3 (y^-2)^-3 ] since (ab)^c = a^c b^c. Then since (a^b)^c = a^(bc) we have 5^-3 x^6 / [ 6^-3 y^6 ] . We rearrange this to get the result 6^3 x^6 / (5^3 y^6), since a^-b = 1 / a^b. STUDENT QUESTION: I do not see how you can take and seperate the problem down like this has it seems to just have reversed the problem around in a different ordering and I do not see how this changed the exponets from being negative Is there anyway you can explain this problem in a little more depth INSTRUCTOR RESPONSE: A fundamental law of exponents is that exponentiation distributes over multiplication, so that (a * b) ^ c = a^c * b^c and (a / b) ^ c = a^c / b^c More specifically, if c = -3 then we have ( a * b ) ^ (-3) = a * (-3) * b^(-3) and ( a / b ) ^ (-3) = a ^ (-3) / b^(-3). Now a ^ (3) / b^(3) = 1 / a ^ (3) / (1 / b^(3)) and 1 / a ^ (3) / (1 / b^(3)) = 1 / a^3 * (b^3 / 1) = b^3 / a^3. This principle applies to any string of multiplcations and division, so for example ( a * b / (c * d) ) ^ e = a^e * b^e / (c^e * d^e). If e = -3 then we would have ( a * b / (c * d) ) ^ (-3) = a^(-3) * b^(-3) / (c^(-3) * d^(-3)). Since the -3 power is the reciprocal of the 3 power this expression becomes 1/a^(3) * (1/b^(3)) / (1/c^(3) * (1/d^(3))), which is easily seen to be equal to 1 / (a^3 * b^3) / (1 / (c^3 * d^3) ). Dividing by (1 / (c^3 * d^3) ) is the same as multiplying by (c^3 * d^3) / 1 so 1 / (a^3 * b^3) / (1 / (c^3 * d^3) ) = 1 / (a^3 * b^3) * (c^3 * d^3) = (c^3 * d^3) / (a^3 * b^3). You should have written the above expressions, which are difficult to read in this notation, on paper, applying the order of operations. The expressions you wrote down should look like the ones below. Be sure you understand the translation from the 'typewriter notation' above to the standard notation depicted below, and be sure you know how to write each of the expressions depicted below in standard notation: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I believe I understand where I made my mistake, as the x should’ve been part of the numerator and the y the denominator. ------------------------------------------------ Self-critique rating #$&*3 ********************************************* Question: * Extra Problem. Express (-8 x^3) ^ -2 with only positive exponents and explain how you used the laws of exponents to get your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (-8x^3)^-2 1 / [(-8x^3)^2) 1 / (-8^2 * x^6) 1 / (64 *x^6) When you see a negative exponent, take the reciprocal and the negative exponent will be positive. Then distribute the exponent via the law , and simplify. confidence rating #$&*2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** ERRONEOUS STUDENT SOLUTION: (-8x^3)^-2 -1/(-8^2 * x^3+2) 1/64x^5 INSTRUCTOR COMMENT: 1/64x^5 means 1 / 64 * x^5 = x^5 / 64. This is not what you meant but it is the only correct interpretation of what you wrote. Also it's not x^3 * x^2, which would be x^5, but (x^3)^2. There are several ways to get the solution. Two ways are shown below. They make more sense if you write them out in standard notation. ONE CORRECT SOLUTION: (-8x^3)^-2 = (-8)^-2*(x^3)^-2 = 1 / (-8)^2 * 1 / (x^3)^2 = 1/64 * 1/x^6 = 1 / (64 x^6). Alternatively (-8 x^3)^-2 = 1 / [ (-8 x^3)^2] = 1 / [ (-8)^2 (x^3)^2 ] = 1 / ( 64 x^6 ). ** * R.2.90 (was R.4.36). Express (x^-2 y) / (x y^2) with only positive exponents and explain how you used the laws of exponents to get your result. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: (x^-2y) / (x y^2) You can break this into two fractions. (x^-2 / x) * (y / y^2) You can then divide and subtract the exponents. (x^-2-1) * (y1-2) (x^-3) * (y^-1) Then take the reciprocal. 1 / (x^3 y) confidence rating #$&*1 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: (1/x^2 * y) / (x * y^2) = (1/x^2 * y) * 1 / (x * y^2) = y * 1 / ( x^2 * x * y^2) = y / (x^3 y^2) = 1 / (x^3 y). Alternatively, or as a check, you could use positive and negative exponents, then in the last step express everything in terms of positive exponents, as follows: (x^-2y)/(xy^2) = x^-2 * y * x^-1 * y^-2 = x^(-2 - 1) * y^(1 - 2) = x^-3 y^-1 = 1 / (x^3 y). STUDENT QUESTION I wrote it down on paper and I am still a little confused. I understand it down to the 3rd step and then I lose the meaning of the law of exponents. Why does it change to: (1/x^2 * y) multiplied by 1/xy^2 the multiplication throws me off. INSTRUCTOR RESPONSE (1/x^2 * y) means ( (1/x^2) * y, which is the same as (y / x^2). So (1/x^2 * y) / (x * y^2) means (y / x^2) / (x * y^2). Division by (x * y^2) is the same as multiplication by 1 / (x * y^2) . So (y / x^2) / (x * y^2) means (y / x^2) * (1 / (x * y^2)). Multiplying the numerators and denominators of these fractions we have (y * 1) / (x^2 * x * y^2), which is y / (x^3 * y^2). Dividing both numerator and denominator by y we have 1 / (x^3 * y). Let me know if this doesn't help. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): I understood did the work very different, but came out with the same answer. I still do not fully grasp the concept, but reviewing on my own time. ????Is this answer still correct????
.............................................
Given Solution: * * ** Starting with 4x^-2(yz)^-1/ [ (-5)^2 x^4 y^2 z^-5] Squaring the -5 and using the fact that (yz)^-1 = y^1 * z^-1: 4x^-2 * y^-1 * z^-1/ [25 * x^4 * y^2 * z^-5} Grouping the numbers, and the x, the y and the z expression: (4/25) * (x^-2/x^4) * (y^-1/y^2) * (z^-1/z^-5) Simplifying by the laws of exponents: (4/25) * x^(-2-4) * y^(-1-2) * z^(-1+5) Simplifying further: (4/25) * x^-6 * y^-3 * z^4 Writing with positive exponents: 4z^4/ (25x^6 * y^3 ) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: * R.2.122 (was R.4.72). Express 0.00421 in scientific notation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 4.21*10^-3 confidence rating #$&*3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** 0.00421 in scientific notation is 4.21*10^-3. This is expressed on many calculators as 4.21 E-4. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&*OK ********************************************* Question: * R.2.128 (was R.4.78). Express 9.7 * 10^3 in decimal notation. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 9700 confidence rating #$&*3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * ** 9.7*10^3 in decimal notation is 9.7 * 1000 = 9700 ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&*OK ********************************************* Question: * R.2.152 \ 150 (was R.2.78) If an unhealthy temperature is one for which | T - 98.6 | > 1.5, then how do you show that T = 97 and T = 100 are unhealthy? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: |-1.6| > 1.4 As 97-98.6 = -1.6 and 100-98.6 = 1.4 confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution:3 * * ** You can show that T=97 is unhealthy by substituting 97 for T to get | -1.6| > 1.5, equivalent to the true statement 1.6>1.5. But you can't show that T=100 is unhealthy, when you sustitute for T then it becomes | 100 - 98.6 | > 1.5, or | 1.4 | > 1.5, giving us 1.4>1.5, which is an untrue statement. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK "