Assignment 12

course mth 158

7/9 1pm

012. `* 12

* 1.4.12 (was 1.4.6). Explain how you found the real solutions of the equation (1-2x)^(1/3) - 1 = 0

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(1-2x)^(1/3) - 1 = 0

(1-2x)^(1/3) = 1

(1-2x)^(1/3)^3 = 1^3

1 - 2x = 1

-2x = 0

x = 0/-2

x = 0

Add one to both sides.

Cube each side to eliminate the radical.

subtract 1 from each side.

Divide both sides by -2.

0 / -2 = 0.

x = 0

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

(1-2x)^(1/3)-1=0

add 1 to both sides to get

(1-2x)^(1/3)=1

then raise both sides to the power 3 to get

[(1-2x)^(1/3)]^3 = 1^3.

Since [(1-2x)^(1/3)]^3 = (1 - 2x) ^( 1/3 * 3) = (1-2x)^1 = 1 - 2x we have

1-2x=1.

Adding -1 to both sides we get

-2x=0

so that

x=0.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 1.4.28 (was 1.4.18). Explain how you found the real solutions of the equation sqrt(3x+7) +

sqrt(x+2) = 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

sqrt (3x + 7) + sqrt (x+2) = 1

Make one radical per side

sqrt (3x + 7) = -sqrt(x+2) +1

Square both sides

sqrt (3x + 7)^2 = (-sqrt(x+2) + 1) ^2

3x + 7 = -sqrt(x+2)^2 - 2(sqrt(x+2)(1)) + 1

Simplify

3x + 7 = x+3 - sqrt2(x+2)

subtract x + 3 from both sides.

2x + 4 = -sqrt2(x+2)

Square both sides.

(2x + 4)^2 = -sqrt2(x+2)^2

4x^2 + 16x + 16 = 4x + 8

subtract 4x + 8 from both sides.

4x^2 +12x + 8 = 0

Factor

4 (x^2 + 3x + 2) = 0

4 (x+1) (x+2) = 0

Divide 4 from both sidse

(x+1) (x+2) = 0

x = -1 x = -2

x={-2}

confidence rating #$&*2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

sqrt(3x+7)+sqrt(x+2)=1

we could just square both sides, recalling that (a+b)^2 = a^2 + 2 a b + b^2.

This would be valid but instead we will add -sqrt(x+2) to both sides to get a form with a square root on

both sides. This choice is arbitrary; it could be done either way. We get

sqrt(3x+7)= -sqrt(x+2) + 1 .

Now we square both sides to get

sqrt(3x+7)^2 =[ -sqrt(x+2) +1]^2.

Expanding the right-hand side using (a+b)^2 = a^2 + 2 a b + b^2 with a = -sqrt(x+2) and b = 1:

3x+7= x+2 - 2sqrt(x+2) +1.

Note that whatever we do we can't avoid that term -2 sqrt(x+2).

Simplifying

3x+7= x+ 3 - 2sqrt(x+2)

then adding -(x+3) we have

3x+7-x-3 = -2sqrt(x+2).

Squaring both sides we get

(2x+4)^2 = (-2sqrt(x+2))^2.

Note that when you do this step you square away the - sign. This can result in extraneous solutions.

We get

4x^2+16x+16= 4(x+2).

Applying the distributive law we have

4x^2+16x+16=4x+8.

Adding -4x - 8 to both sides we obtain

4x^2+12x+8=0.

Factoring 4 we get

4*((x+1)(x+2)=0

and dividing both sides by 4 we have

(x+1)(x+2)=0

Applying the zero principle we end up with

(x+1)(x+2)=0

so that our potential solution set is

x= {-1, -2}.

Both of these solutions need to be checked in the original equation sqrt(3x+7)+sqrt(x+2)=1

As it turns out:

the solution -1 gives us sqrt(4) + sqrt(1) = 1 or 2 + 1 = 1, which isn't true,

while

the solution -2 gives us sqrr(1) + sqrt(0) = 1 or 1 + 0 = 1, which is true.

x = -1 is an extraneous solution that was introduced in our squaring step.

Thus our only solution is x = -2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 1.4.40 (was 1.4.30). Explain how you found the real solutions of the equation x^(3/4) - 9

x^(1/4) = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x^(3/4) - 9x^(1/4) = 0

Factor out x^(1/4)

x^(1/4) (x^1/2 - 9) = 0

Zero Property

x^(1/4) = 0

(x^1/2-9) = 0

x^(1/2) = 9

Square

x^(1/2)^2 = 9 ^2

x = 81

x= {0, 81}

confidence rating #$&*2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Here we can factor x^(1/4) from both sides:

Starting with

x^(3/4) - 9 x^(1/4) = 0

we factor as indicated to get

x^(1/4) ( x^(1/2) - 9) = 0.

Applying the zero principle we get

x^(1/4) = 0 or x^(1/2) - 9 = 0

which gives us

x = 0 or x^(1/2) = 9.

Squaring both sides of x^(1/2) = 9 we get x = 81.

So our solution set is {0, 81). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 1.4.46 (was 1.4.36). Explain how you found the real solutions of the equation x^6 - 7 x^3 -

8 =0

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Reworked:

Substitute a value for x.

x^6 - 7x^3 - 8 = 0

a^2 - 7a - 8 = 0

Factor

a^2 - 8a + 1a - 8 = 0

a(a - 8) + (a - 8) = 0

(a - 8) (a + 1) = 0

Zero Property

a = 8, a = -1

substitute original x.

x^3 = 8, x^3 = -1

x = 2, x = -1

{2, -1}

confidence rating #$&*0

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Let a = x^3.

Then a^2 = x^6 and the equation x^6 - 7x^3 - 8=0 becomes

a^2 - 7 a - 8 = 0.

This factors into

(a-8)(a+1) = 0,

with solutions

a = 8, a = -1.

Since a = x^3 the solutions are

x^3 = 8 and

x^3 = -1.

We solve these equations to get

x = 8^(1/3) = 2

and

x = (-1)^(1/3) = -1.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I honestly had no idea how to approach this problem. Reworking after I

realized you could substitute a for x^3, I had no problems.

------------------------------------------------

Self-critique rating #$&*2

*********************************************

Question: * 1.4.64 (was 1.4.54). Explain how you found the real solutions of the equation x^2 - 3 x -

sqrt(x^2 - 3x) = 2.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

You can substitute a = sqrt x^2 - 3x

a^2 - a = 2

a^2 - a -2 =0

Factor to

(a + 1) (a-2)

a = -1, a = 2

Substitute for a

sqrt (x^2 - 3x) = -1 is impossible.

Square both sides

sqrt (x^2 -3x) = 2

x^2 - 3x = 4

Factor to

(x +1) (x - 4) =0

x = -1, x = 4

{-1, 4}

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Let u = sqrt(x^2 - 3x).

Then u^2 = x^2 - 3x, and the equation is

u^2 - u = 2.

Rearrange to get

u^2 - u - 2 = 0.

Factor to get

(u-2)(u+1) = 0.

Solutions are u = 2, u = -1.

Substituting x^2 - 3x back in for u we get

sqrt(x^2 - 3 x) = 2

and

sqrt(x^2 - 3 x) = -1.

The second is impossible since sqrt can't be negative.

The first gives us

sqrt(x^2 - 3x) = 2

so

x^2 - 3x = 4.

Rearranging we have

x^2 - 3x - 4 = 0

so that

(x-4)(x+1) = 0

and

x = 4 or x = -1.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 1.4.92 \ 90 (was 1.4.66). Explain how you found the real solutions of the equation x^4 +

sqrt(2) x^2 - 2 = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Subsitute a = x^2

a^2 + sqrt (2) a - 2 = 0

Solve using the quadratic formula.

a = [-b +- sqrt (b^2 - 4ac)] / 2a

a = [-sqrt2 +- sqrt (2^2 - 4(1)(-2)]/2(1)

a = [-sqrt2 +- sqrt (2 - (-8)) / 2

a = (-sqrt2 +- sqrt10) / 2

Substitute x^2 for a

x^2 = (-sqrt2 + sqrt 10) / 2.

x = sqrt (-sqrt(2) + sqrt(10))/2)

x = -sqrt ( -sqrt(2) + sqrt(10))/2)

x = .935, x = -.935

confidence rating #$&*2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

x^4+ sqrt(2)x^2-2=0

we let u=x^2 so that u^2 = x^4 giving us the equation

u^2 + sqrt(2)u-2=0

Using the quadratic formula

u=(-sqrt2 +- sqrt(2-(-8))/2

so

u=(-sqrt2+-sqrt10)/2

Note that u = (-sqrt(2) - sqrt(10) ) / 2 is negative, and u = ( -sqrt(2) + sqrt(10) ) / 2 is positive.

u = x^2, so u can only be positive. Thus the only solutions are the solutions to the equation come from

x^2 = ( -sqrt(2) + sqrt(10) ) / 2.

The solutions are

x = sqrt( ( -sqrt(2) + sqrt(10) ) / 2 )

and

x = -sqrt( ( -sqrt(2) + sqrt(10) ) / 2 ).

Approximations to three significant figures are

x = .935

and

x = -.935.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

Add comments on any surprises or insights you experienced as a result of this assignment."

&#This looks very good. Let me know if you have any questions. &#

#$&*