Assignment 14

course mth 158

7/11 9pm

014. `* 14

*********************************************

Question: * 1.6.12 (was 1.6.6). Explain how you found the real solutions of the equation | 1 - 2 z | + 6

= 9.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

|1- 2z| + 6 = 9

|1- 2z| = 3

1 - 2z = 3

1 - 2z = -3

-2z = 2, -2z = -4

z = -1, z = 2

z = {-1, 2}

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

| 1-2z| +6 = 9 we add -6 to both sides to get

| 1 - 2z| = 3. We then use the fact that | a | = b means that a = b or a = -b:

1-2z=3 or 1-2z= -3 Solving both of these equations:

-2z = 2 or -2z = -4 we get

z= -1 or z = 2 We express our solution set as

{-1, 2} **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 1.6.30 (was 1.6.24). Explain how you found the real solutions of the equation | x^2 +3x - 2

| = 2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

| x^2 + 3x - 2 | = 2

Absolute Value

x^2 + 3x - 2 = 2, x^2 + 3x - 2 = -2

Factor

x^2 + 3x - 4 = 0, x^2 + 3x = 0

x^2 + 4x - 1x - 4 = 0, x(x+3) = 0

(x + 4) (x +1) = 0, x = -3

Solve

x = -4, x= -1, x = -3

x = {-4, -3, -1}

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * My note here might be incorrect.

If the equation is | x^2 +3x -2 | = 2 then we have

x^2 + 3x - 2 = 2 or x^2 + 3x - 2 = -2.

In the first case we get x^2 + 3x - 4 = 0, which factors into (x-1)(x+4) = 0 with solutions x = 1 and x =

-4.

In the second case we have x^2 + 3x = 0, which factors into x(x+3) = 0, with solutions x = 0 and x = -3.

**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 1.6.40 \ 36 (was 1.6.30). Explain how you found the real solutions of the inequality | x + 4

| + 3 < 5.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

|x + 4 | + 3 < 5

|x + 4 | < 2

x + 4 < 2, x + 4 < -2

-2 < x+4, x+4 < 2

-6 < x, x < -2

-6 < x < 2

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: | x+4| +3 < 5

| x+4 | < 2

-2 < x+4 < 2

-6 < x < -2

STUDENT QUESTION

I was hoping to see more in the given solution as to why we move 2 to the left of the inequality. I think

there is a formula for that, but I don’t remember what it is.

Could you explain why we move the 2?

INSTRUCTOR RESPONSE

The 2 doesn't get moved. To understand what's going on:

Think about the inequality

| A | < = 4.

This is clearly true if A = 4, 3, 2, 1 or 0.

It's also clearly true if A = -1, -2, -3 or -4.

It's not true if A = -5 or -6 or -7, etc..

So

| A | < = 4 means the same thing as

-4 <= A <= 4.

More generally

| A | < B says the same thing as

- B < A < B.

In your solution you said that

| x + 4 | + 3 < 5 add -3 to both sides give us

x + 4 < 2

This isn't so. The | | signs don't go away when you add -3 to both sides. You get

| x + 4 | < 2, which means the same thing as

-2 < x + 4 < 2 because of the rule we just say, that | A | < B means -B < A < B.

Correcting your solution:

| x + 4 | + 3 < 5 add -3 to both sides

| x + 4 | < 2 add -2 to the left of the inequality

-2 < x + 4 < 2 apply the rule for | A | < B with A = x + 4 and B = 2

-2-4 < x+4-4 < 2-4 simplify to get

-6 < x < -2

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 1.6.52 \ 48 (was 1.6.42). Explain how you found the real solutions of the inequality | -x -

2 | >= 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

|-x - 2| >= 1

-x - 2 >= 1, -x - 2 <= -1

-x >= 3, -x <= 1

x <= - 3, x >= -1

x = { -inf, -3} u {=-1, inf}

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Correct solution:

| -x -2 | >= 1 Since | a | > b means a > b or a < -b (note the word 'or') we have

-x-2 >= 1 or -x -2 <= -1. These inequalities are easily solved to get

-x >= 3 or -x <= 1 or

x <= -3 or x >= -1.

So our solution is

{-infinity, -3} U {-1, infinity}. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique rating #$&*OK

"

&#Very good work. Let me know if you have questions. &#

#$&*