Assignment 28

#$&*

course mth 158

7/26 1:15am

Question: * 3.6.2 / 10. P = (x, y) on y = x^2 - 8.

Give your expression for the distance d from P to (0, -1)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

d = sqrt ((0-x)^2 + (-1 - y)^2)

d = sqrt (x^2 + (x^2 - 7)^2)

d = sqrt (x^2 + (x^4 - 14x^2 +49)

d = sqrt (x^4 - 13x^2 +49)

d(0) = sqrt (0^4 - 13(0)^2 + 49

d(0) = sqrt (49)

d(0) = 7

d(-1) = sqrt (-1^4 - 13(-1)^2 +49)

d(-1) = sqrt (-1 - 169 + 49)

Solution is negative, therefore not possible.

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** P = (x, y) is of the form (x, x^2 - 8).

So the distance from P to (0, -1) is

sqrt( (0 - x)^2 + (-1 - (x^2-8))^2) =

sqrt(x^2 + (-7-x^2)^2) =

sqrt( x^2 + 49 - 14 x^2 + x^4) =

sqrt( x^4 - 13 x^2 + 49). **

What are the values of d for x=0 and x = -1?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:OK

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * If x = 0 we have

sqrt( x^4 - 13 x^2 + 49) = sqrt(0^4 - 13 * 0 + 49) = sqrt(49) = 7.

If x = -1 we have

sqrt( x^4 - 13 x^2 + 49) = sqrt((-1)^4 - 13 * (-1) + 49) = sqrt( 63).

sqrt(64) = 8, so sqrt(63) is a little less than 8 (turns out that sqrt(63) is about 7.94).

Note that these results are the distances from the x = 0 and x = 1 points of the graph of y = x^2 - 8 to

the point (0, -1). You should have a sketch of the function and you should verify that these distances make

sense. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I didn't cancel the exponent in -13 x^2.

------------------------------------------------

Self-critique rating #$&*3

*********************************************

Question: * 3.6.9 / 18 (was and remains 3.6.18). Circle inscribed in square.

What is the expression for area A as a function of the radius r of the circle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A(r) = pi r^2

The sides are equal to the radius. So (2r)^2 would be the area of the square. 4r^2.

This works because 2r would equal one side of the square, and a of a square is l^2.

the area of the circle is pi r^2.

The permieter of the square would be 4 * 2r = 8r.

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** A circle inscribed in a square touches the square at the midpoint of each of the square's edges; the

circle is inside the square and its center coincides with the center of the square. A diameter of the

circle is equal in length to the side of the square.

If the circle has radius r then the square has sides of length 2 r and its area is (2r)^2 = 4 r^2.

The area of the circle is pi r^2.

So the area of the square which is not covered by the circle is 4 r^2 - pi r^2 = (4 - pi) r^2. **

What is the expression for perimeter p as a function of the radius r of the circle?

The perimeter of the square is 4 times the length of a side which is 4 * 2r = 8r. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 3.6.19 / 27 (was 3.6.30). one car 2 miles south of intersection at 30 mph, other 3 miles east

at 40 mph

Give your expression for the distance d between the cars as a function of time.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The two functions would be 2+30 t and 3 + 40t

d = sqrt ((2+30t)^2 + (3+40t^2) =

= sqrt (4+120t + 900t^2 + 9 + 240t + 1600t^2)

= sqrt (2500t^2 + 360t + 13)

confidence rating #$&*2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * ** At time t the position of one car is 2 miles south, increasing at 30 mph, so its position function

is 2 + 30 t.

The position function of the other is 3 + 40 t.

If these are the x and the y coordinates of the position then the distance between the cars is

distance = sqrt(x^2 + y^2) = sqrt( (2 + 30 t)^2 + (3 + 40t)^2 ) = sqrt( 4 + 120 t + 900 t^2 + 9 + 240 t +

1600 t^2) = sqrt( 2500 t^2 + 360 t + 13). **

qa college algebra part 2

030. * 30

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 4.3.42 (4.1.42 7th edition) (was 4.1.30). Describe the graph of f(x)= x^2-2x-3 as instructed.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is a quadratic equation, meaning the graph will be a parabola.

f(x) = x^2 - 2x - 3

a = 1, b = -2, c = -3

Since a > 0, the graph will open upwards.

First, find symmetry. -b/(2a)

-(-2) / (2(1))

2 / 2

1

f(1) = 1^2 - 2 * 1 - 3

f(1) = 1 - 2 - 3

f(1) = -4

So the vertex is (1,-4).

Next, you must find the x-ints by factoring.

f(x) = x^2 - 2x - 3

= x^2 - 3x + x -3

x(x-3) + (x -3)

(x+1) + (x-3)

x = -1

x = 3

So x-ints are (1,0) and (3,0).

y-int occurs at x=0, so we substitute in the function.

f(0) = 0^2 - 2*0 - 3

f(0) = -3

y int = (0, -3)

confidence rating #$&*2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The function is of the form y = a x^2 + b x + c with a = 1, b = -2 and c = -3.

The graph of this quadratic function will open upwards, since a > 0.

The axis of symmetry is the line x = -b / (2 a) = -(-2) / (2 * 1) = 1. The vertex is on this line at y = f

(1) = 1^2 - 2 * 1 - 3 = -4. So the the vertex is at the point (1, -4).

The x intercepts occur where f(x) = x^2 - 2 x - 3 = 0. We can find the values of x by either factoring or

by using the quadratic formula. Here will will factor to get

(x - 3) ( x + 1) = 0 so that

x - 3 = 0 OR x + 1 = 0, giving us

x = 3 OR x = -1.

So the x intercepts are (-1, 0) and (3, 0).

The y intercept occurs when x = 0, giving us y = f(0) = -3. The y intercept is the point (0, -3).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * 4.3.57. graph of parabola vertex (1, -3), point (3, 5)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(h,k) is the vertex, so (1, -3).

The (3,5) will serve as our (x,y).

y-k = a(x-h)^2

5-(-3) = a (3-1)^2

8 = a * 4

a = 2

So, we substitute.

y +3 = 2(x-1)^2

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The graph is a parabola with vertex (1, -3), so it has form {}{}(y - k) = a ( x - h)^2, with h = 1 and

k = -3. Thus we have{}{}y - (-3) = a (x - 1)^2, {}{}and the only unknown is a. To find a we substitute the

coordinates of (3, 5) for x and y, obtaining the equation(5 - (-3)) = a ( 3 - 1)^2, or{}(5 + 3) = a * 2^2,

or{}8 = a * 4, with the obvious solution{}a = 2.{}{}Thus the equation of the parabola is{}{}y + 3 = 2 ( x -

1)^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * Extra Problem (4.1.67 7th edition) (was 4.1.50). What are your quadratic functions whose x

intercepts are -5 and 3, for the values a=1; a=2; a=-2; a=5?

The x values mean that we can find (X+5) and (x-3)

1(x+5)(x-3)

x^2 - 2x - 2

2(x+5)(x-3)

2x^2 + 4x - 30

-2(x+5)(x-3)

-2x^2 - 4x + 30

5(x+5)(x-3)

5x^2 +10x - 75

Since (x+5) = 0 when x = -5 and (x - 3) = 0 when x = 3, the quadratic function will be a multiple of (x+5)

(x-3).

If a = 1 the function is 1(x+5)(x-3) = x^2 + 2 x - 15.

If a = 2 the function is 2(x+5)(x-3) = 2 x^2 + 4 x - 30.

If a = -2 the function is -2(x+5)(x-3) = -2 x^2 -4 x + 30.

If a = 5 the function is 5(x+5)(x-3) = 5 x^2 + 10 x - 75.

Does the value of a affect the location of the vertex?

In every case the vertex, which lies at -b / (2a), will be on the line x = -1. The value of a does not

affect the x coordinate of the vertex, which lies halfway between the zeros at (-5 + 3) / 2 = -1.

The y coordinate of the vertex does depend on a. Substituting x = -1 we obtain the following:

For a = 1, we get 1 ( 1 + 5) ( 1 - 3) = -12.

For a = 2, we get 2 ( 1 + 5) ( 1 - 3) = -24.

For a = -2, we get -2 ( 1 + 5) ( 1 - 3) = 24.

For a = 5, we get 5 ( 1 + 5) ( 1 - 3) = -60.

So the vertices are (-1, -12), (-1, -24), (-1, 24) and (-1, -60).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK"

&#Your work looks very good. Let me know if you have any questions. &#

#$&*