Assignment 30

#$&*

course mth 158

7/29 6:30

030. * 30

*********************************************

Question: * 4.3.42 (4.1.42 7th edition) (was 4.1.30). Describe the graph of f(x)= x^2-2x-3 as instructed.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f(x) = x^2 - 2x - 3

Graph will open upwards, as a > 0

Factor to get x-intercepts.

x = 3, x = -1

x - int are (3, 0) and (-1, 0)

Y-int is when x = 0.

y = -3

Axis of symmetry is -b/2a

2/2 = 1

Plug the axis of symmetry for x in the function to find the vertex.

f(1) = 1^2 - 2(1) -3

f(1) = 1 - 2 - 3

f(1) = -4

Vertex is (1,-4)

domain x = all real numbers

range y > -4

confidence rating #$&*3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The function is of the form y = a x^2 + b x + c with a = 1, b = -2 and c = -3.

The graph of this quadratic function will open upwards, since a > 0.

The axis of symmetry is the line x = -b / (2 a) = -(-2) / (2 * 1) = 1. The vertex is on this line at y = f

(1) = 1^2 - 2 * 1 - 3 = -4. So the the vertex is at the point (1, -4).

The x intercepts occur where f(x) = x^2 - 2 x - 3 = 0. We can find the values of x by either factoring or

by using the quadratic formula. Here will will factor to get

(x - 3) ( x + 1) = 0 so that

x - 3 = 0 OR x + 1 = 0, giving us

x = 3 OR x = -1.

So the x intercepts are (-1, 0) and (3, 0).

The y intercept occurs when x = 0, giving us y = f(0) = -3. The y intercept is the point (0, -3).

The function can be evaluated for any real number x, so its domain is the set of all real numbers.

The graph is a parabola opening upward, with vertex (1, -4). So the lowest possible y value is -4, and all

values greater than -4 will occur. So the range is y > -4.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&* OK

*********************************************

Question: * 4.3.57. graph of parabola vertex (1, -3), point (3, 5)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Use the formula y-k = a(x-h)^2

y + 3 = a (x - 1) ^2

5 + 3 = a (3 - 1) ^2

5 + 3 = a ( 2 ) ^2

5 + 3 = 4a

8 = 4a

2 = a

So, the equation is y + 3 = 2(x-1)^2

confidence rating #$&*2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * The graph is a parabola with vertex (1, -3), so it has form {}{}(y - k) = a ( x - h)^2, with h = 1 and

k = -3. Thus we have{}{}y - (-3) = a (x - 1)^2, {}{}and the only unknown is a. To find a we substitute the

coordinates of (3, 5) for x and y, obtaining the equation(5 - (-3)) = a ( 3 - 1)^2, or{}(5 + 3) = a * 2^2,

or{}8 = a * 4, with the obvious solution{}a = 2.{}{}Thus the equation of the parabola is{}{}y + 3 = 2 ( x -

1)^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating #$&*OK

*********************************************

Question: * Extra Problem (4.1.67 7th edition) (was 4.1.50). What are your quadratic functions whose x

intercepts are -5 and 3, for the values a=1; a=2; a=-2; a=5?

x + 5 = 0, x - 3 = 0

1(x+5)(x-3)= x^2 + 2x -15

2(x+5)(x-3)= 2x^2 + 4x - 30

-2(x+5)(x-3)=-2x^2-4x + 30

5(x+5)(x-3)=5x^2+10x-75

The line of symmetry for each is -1, so when we find y, the x value will be (-1).

1(1+5)(1-3) = -12

2(1+5)(1-3) = -24

-2(1+5)(1-3) = 24

5(1+5)(1-3) = -60

The vertices are (-1, -12), (-1, -24), (-1, 24), (-1, -60)

Since (x+5) = 0 when x = -5 and (x - 3) = 0 when x = 3, the quadratic function will be a multiple of (x+5)

(x-3).

If a = 1 the function is 1(x+5)(x-3) = x^2 + 2 x - 15.

If a = 2 the function is 2(x+5)(x-3) = 2 x^2 + 4 x - 30.

If a = -2 the function is -2(x+5)(x-3) = -2 x^2 -4 x + 30.

If a = 5 the function is 5(x+5)(x-3) = 5 x^2 + 10 x - 75.

Does the value of a affect the location of the vertex?

In every case the vertex, which lies at -b / (2a), will be on the line x = -1. The value of a does not

affect the x coordinate of the vertex, which lies halfway between the zeros at (-5 + 3) / 2 = -1.

The y coordinate of the vertex does depend on a. Substituting x = -1 we obtain the following:

For a = 1, we get 1 ( 1 + 5) ( 1 - 3) = -12.

For a = 2, we get 2 ( 1 + 5) ( 1 - 3) = -24.

For a = -2, we get -2 ( 1 + 5) ( 1 - 3) = 24.

For a = 5, we get 5 ( 1 + 5) ( 1 - 3) = -60.

So the vertices are (-1, -12), (-1, -24), (-1, 24) and (-1, -60).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):2

------------------------------------------------

Self-critique rating #$&*OK"

&#Good responses. Let me know if you have questions. &#

#$&*