#$&* course mth 158 7/29 6:30 030. * 30
.............................................
Given Solution: * * The function is of the form y = a x^2 + b x + c with a = 1, b = -2 and c = -3. The graph of this quadratic function will open upwards, since a > 0. The axis of symmetry is the line x = -b / (2 a) = -(-2) / (2 * 1) = 1. The vertex is on this line at y = f (1) = 1^2 - 2 * 1 - 3 = -4. So the the vertex is at the point (1, -4). The x intercepts occur where f(x) = x^2 - 2 x - 3 = 0. We can find the values of x by either factoring or by using the quadratic formula. Here will will factor to get (x - 3) ( x + 1) = 0 so that x - 3 = 0 OR x + 1 = 0, giving us x = 3 OR x = -1. So the x intercepts are (-1, 0) and (3, 0). The y intercept occurs when x = 0, giving us y = f(0) = -3. The y intercept is the point (0, -3). The function can be evaluated for any real number x, so its domain is the set of all real numbers. The graph is a parabola opening upward, with vertex (1, -4). So the lowest possible y value is -4, and all values greater than -4 will occur. So the range is y > -4. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: * 4.3.57. graph of parabola vertex (1, -3), point (3, 5) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Use the formula y-k = a(x-h)^2 y + 3 = a (x - 1) ^2 5 + 3 = a (3 - 1) ^2 5 + 3 = a ( 2 ) ^2 5 + 3 = 4a 8 = 4a 2 = a So, the equation is y + 3 = 2(x-1)^2 confidence rating #$&*2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The graph is a parabola with vertex (1, -3), so it has form {}{}(y - k) = a ( x - h)^2, with h = 1 and k = -3. Thus we have{}{}y - (-3) = a (x - 1)^2, {}{}and the only unknown is a. To find a we substitute the coordinates of (3, 5) for x and y, obtaining the equation(5 - (-3)) = a ( 3 - 1)^2, or{}(5 + 3) = a * 2^2, or{}8 = a * 4, with the obvious solution{}a = 2.{}{}Thus the equation of the parabola is{}{}y + 3 = 2 ( x - 1)^2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):OK ------------------------------------------------ Self-critique rating #$&*OK ********************************************* Question: * Extra Problem (4.1.67 7th edition) (was 4.1.50). What are your quadratic functions whose x intercepts are -5 and 3, for the values a=1; a=2; a=-2; a=5? x + 5 = 0, x - 3 = 0 1(x+5)(x-3)= x^2 + 2x -15 2(x+5)(x-3)= 2x^2 + 4x - 30 -2(x+5)(x-3)=-2x^2-4x + 30 5(x+5)(x-3)=5x^2+10x-75 The line of symmetry for each is -1, so when we find y, the x value will be (-1). 1(1+5)(1-3) = -12 2(1+5)(1-3) = -24 -2(1+5)(1-3) = 24 5(1+5)(1-3) = -60 The vertices are (-1, -12), (-1, -24), (-1, 24), (-1, -60) Since (x+5) = 0 when x = -5 and (x - 3) = 0 when x = 3, the quadratic function will be a multiple of (x+5) (x-3). If a = 1 the function is 1(x+5)(x-3) = x^2 + 2 x - 15. If a = 2 the function is 2(x+5)(x-3) = 2 x^2 + 4 x - 30. If a = -2 the function is -2(x+5)(x-3) = -2 x^2 -4 x + 30. If a = 5 the function is 5(x+5)(x-3) = 5 x^2 + 10 x - 75. Does the value of a affect the location of the vertex? In every case the vertex, which lies at -b / (2a), will be on the line x = -1. The value of a does not affect the x coordinate of the vertex, which lies halfway between the zeros at (-5 + 3) / 2 = -1. The y coordinate of the vertex does depend on a. Substituting x = -1 we obtain the following: For a = 1, we get 1 ( 1 + 5) ( 1 - 3) = -12. For a = 2, we get 2 ( 1 + 5) ( 1 - 3) = -24. For a = -2, we get -2 ( 1 + 5) ( 1 - 3) = 24. For a = 5, we get 5 ( 1 + 5) ( 1 - 3) = -60. So the vertices are (-1, -12), (-1, -24), (-1, 24) and (-1, -60). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):2 ------------------------------------------------ Self-critique rating #$&*OK"