query1

#$&*

course Mth173

6/9/13 ~8:18PM

001. `query1

*********************************************

Question: `qFor the temperature vs. clock time model, what were temperature and time for the first, third and fifth data points (express as temp vs clock time ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

T C(temp)

0 95

20 60

40 41

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qAccording to your graph what would be the temperatures at clock times 7, 19 and 31?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

According to the graph and equation:

Y= .02t^2 - 2.15t + 95

If I plug into my equation t=7,19,31 I get

Y(7) =.02(7)^2 -2.15(7) +95

Y=80.93

Y(19)= 02(19)^2 -2.15(19) +95

Y=61.37

Y(31)= 02(31)^2 -2.15(31) +95

Y=47.57

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Continue to the next question **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat three points did you use as a basis for your quadratic model (express as ordered pairs)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I used the three points (0,95) (20,60) (40,41)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** A good choice of points `spreads' the points out rather than using three adjacent points. For example choosing the t = 10, 20, 30 points would not be a good idea here since the resulting model will fit those points perfectly but by the time we get to t = 60 the fit will probably not be good. Using for example t = 10, 30 and 60 would spread the three points out more and the solution would be more likely to fit the data. The solution to this problem by a former student will be outlined in the remaining nswers'.

STUDENT SOLUTION (this student probably used a version different from the one you used; this solution is given here for comparison of the steps, you should not expect that the numbers given here will be the same as the numbers you obtained when you solved the problem.)

For my quadratic model, I used the three points

(10, 75)

(20, 60)

(60, 30). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the first equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(0,95) → 95 = a(0)^2 +b(0) + c

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from the first data point (10,75) was 100a + 10b +c = 75.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qWhat is the second equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(20,60) →60 = a(20)^2 + b(20) + c

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my second data point was 400a + 20b + c = 60 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the third equation you got when you substituted into the form of a quadratic?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(40,41) → 41= a(40)^2 +b(40) +c

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The equation that I got from my third data point was 3600a + 60b + c = 30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat multiple of which equation did you first add to what multiple of which other equation to eliminate c, and what is the first equation you got when you eliminated c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted the first equation from the last in order to obtain this new equation

-54=1600a +b

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: First, I subtracted the second equation from the third equation in order to eliminate c.

By doing this, I obtained my first new equation

3200a + 40b = -30. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qTo get the second equation what multiple of which equation did you add to what multiple of which other quation, and what is the resulting equation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I subtracted the first equation from the second one to eliminate c

-35 = 400a +20b

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: This time, I subtracted the first equation from the third equation in order to again eliminate c.

I obtained my second new equation:

3500a + 50b = -45**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhich variable did you eliminate from these two equations, and what was the value of the variable for which you solved these equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I multiplied the second by -2

-2(-35=400a +20b)

70 =-800a -40 to cancel out -54= 1600a +40b

→ a=.02

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a and b, I decided to eliminate b because of its smaller value. In order to do this, I multiplied the first new equation by -5

-5 ( 3200a + 40b = -30)

and multiplied the second new equation by 4

4 ( 3500a + 50b = -45)

making the values of -200 b and 200 b cancel one another out. The resulting equation is -2000 a = -310. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat equation did you get when you substituted this value into one of the 2-variable equations, and what did you get for the other variable?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I substituted a=.02 into the second equation

-54=1600a + 40b → -54 = 1600(.02) + 40b

-86=40b

b=-2.15

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: After eliminating b, I solved a to equal .015

a = .015

I then substituted this value into the equation

3200 (.015) + 40b = -30

and solved to find that b = -1.95. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the value of c obtained from substituting into one of the original equations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The final value for c was 95 when substituting into the original equation 95=.02(0) -2.15(0) +c → c=95

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: By substituting both a and b into the original equations, I found that c = 93 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the resulting quadratic model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The resulting quadratic is y= .02t^2 -2.15t + 95

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Therefore, the quadratic model that I obtained was

y = (.015) x^2 - (1.95)x + 93. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat did your quadratic model give you for the first, second and third clock times on your table, and what were your deviations for these clock times?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The values for the clock times were right on point for the points I chose because they were the same asked. Other points when time was 10,60,30 deviated .5, 8, .5. Values (10,75.5)(60,38)(30,48.5)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: This model y = (.015) x^2 - (1.95)x + 93 evaluated for clock times 0, 10 and 20 gave me these numbers:

First prediction: 93

Deviation: 2

Then, since I used the next two ordered pairs to make the model, I got back

}the exact numbers with no deviation. So. the next two were

Fourth prediction: 48

Deviation: 1

Fifth prediction: 39

Deviation: 2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat was your average deviation?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

My average deviation was 3 points maximum

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: My average deviation was .6 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:OK

*********************************************

Question: `qIs there a pattern to your deviations?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Some patterns appeared, for example there were constant .5 deviations and a couple way off by 2 or more whole units.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: There was no obvious pattern to my deviations.

INSTRUCTOR NOTE: Common patterns include deviations that start positive, go negative in the middle then end up positive again at the end, and deviations that do the opposite, going from negative to positive to negative. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qHave you studied the steps in the modeling process as presented in Overview, the Flow Model, Summaries of the Modeling Process, and do you completely understand the process?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Yes, I understand obtaining points, equations and solving for the variables.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Yes, I do completely understand the process after studying these outlines and explanations. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qHave you memorized the steps of the modeling process, and are you gonna remember them forever? Convince me.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I feel I have memorized many of the steps, I remember solving systems of equations as well as the form of the equation to model the points. y=ax^2 +bx +c used

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Yes, sir, I have memorized the steps of the modeling process at this point. I also printed out an outline of the steps in order to refresh my memory often, so that I will remember them forever!!!

INSTRUCTOR COMMENT: OK, I'm convinced. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery Completion of Model first problem: Completion of model from your data.Give your data in the form of depth vs. clock time ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First set of data pairs from randomized data

clock t 5.3 10.6 15.9 21.2 26.5 31.8

depth 63.7 54.8 46 37.7 32 26.6

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: Here are my data which are from the simulated data provided on the website under randomized problems.

(5.3, 63.7)

(10.6. 54.8)

(15.9, 46)

(21.2, 37.7)

(26.5, 32)

(31.8, 26.6). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat three points on your graph did you use as a basis for your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(5.3,63.7)(15.9,46)(31.8,26.6)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: As the basis for my graph, I used

( 5.3, 63.7)

(15.9, 46)

(26.5, 32)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

63.7 = a(5.3)^2 + b(5.3)+c

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (5.3, 63.7) gives me the equation 28.09a + 5.3b + c = 63.7 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

46 = a(15.9)^2 +b(15.9) +c

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (15.9, 46) gives me the equation 252.81a +15.9b + c = 46 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

26.6 = a(31.8)^2 +b(31.8) +c

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The point (26.5,32) gives me the equation 702.25a + 26.5b + c = 32. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I eliminated the first with the third equation and obtained

-37.1=983.15a + 26.56b

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subtracting the second equation from the third gave me 449.44a + 10.6b = -14. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I eliminated the second from the third equation and obtained

19.4=-758.43a -15.9b

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subtracting the first equation from the third gave me 674.16a + 21.2b = -31.7. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I solved for a by using both equations obtained from eliminating c

19.4=758.43a -15.9b

-37.1 =983.15a +26.56b

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated b by multiplying the first equation by 21.2, which was the b value in the second equation. Then, I multiplied the seond equation by -10.6, which was the b value of the first equation, only I made it negative so they would cancel out. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A=-.017

B=-2.03

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: a = .0165, b = -2 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

C=73.98

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 73.4 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=.017X^2 -2.03X +73.98

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: y = (.0165)x^2 + (-2)x + 73.4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your depth prediction for the given clock time (give clock time also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(10.6,54.8)

Given clock time was 10.6 plugged into my equation I obtained

54.37

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The given clock time was 46 seconds, and my depth prediction was 16.314 cm.**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat clock time corresponds to the given depth (give depth also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The specified depth was 37.7 cm at 26.5 seconds

@&

You don't indicate how you got these results. You should always at least briefly indicate how the results were obtained.

*@

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** INSTRUCTOR COMMENT: The exercise should have specified a depth.

The specifics will depend on your model and the requested depth. For your model y = (.0165)x^2 + (-2)x + 73.4, if we wanted to find the clock time associated with depth 68 we would note that depth is y, so we would let y be 68 and solve the resulting equation:

68 = .01t^2 - 1.6t + 126

using the quadratic formula. There are two solutions, x = 55.5 and x = 104.5, approximately. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qCompletion of Model second problem: grade average Give your data in the form of grade vs. clock time ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Percent of Assignments Reviewed Grade Average

0 1

10 1.790569

20 2.118034

30 2.369306

40 2.581139

50 2.767767

60 2.936492

70 3.09165

80 3.236068

90 3.371708

100 3.5

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: Grade vs. percent of assignments reviewed

(0, 1)

(10, 1.790569)

(20, 2.118034)

(30, 2.369306)

(40, 2.581139)

(50, 2.767767)

(60, 2.936492)

(70, 3.09165)

(80, 3.236068)

(90, 3.371708)

(100, 3.5). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat three points on your graph did you use as a basis for your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(10,1.790569)

(40,2.581139)

(90,3.371708)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

(20, 2.118034)

(50, 2.767767)

(100, 3.5)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1.7905669=100A +10B + C

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 400a + 20b + c = 2.118034**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

2.581139 =1600A+40B + C

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 2500a + 50b + c = 2.767767 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3.371708 =8100A + 90B + C

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 10,000a + 100b + c = 3.5 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1.581139=8000A+80B

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 7500a + 50b = .732233. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

.79057=1500A +30B

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: Subracting the first equation from the third I go

9600a + 80b = 1.381966 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I started by multiplying the fist equation by 3 to get (10b) to equal 30b that would cancel out the second new equation, leaving the variable a to be solved for

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: In order to solve for a, I eliminated the variable b. In order to do this, I multiplied the first new equation by 80 and the second new equation by -50. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Values I obtained were a=-.0000567619 and b=.02319042

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

a = -.0000876638

b = .01727 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

C=1.74434

confidence rating #$&*:OK

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 1.773. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

My function model was y=-.0000567X^2+.02319X +1.744

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** y = -.0000876638 x^2 + (.01727)x + 1.773 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your percent-of-review prediction for the given range of grades (give grade range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The percent of review to achieve the grade 3.0 should be around a 64 to 65 according to the model. A 4.0 is not possible based on the information created from this model. 100% of assignments reviewed is the maximum and that comes out to around a 3.5

@&

There are course-appropriate ways to obtain these results, and inappropriate ways.

You generally need to specify how you get your results.

*@

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model desired average.

For example if the model is y = -.00028 x^2 + .06 x + .5 (your model will probably be different from this) and the grade average desired is 3.3 we would find the percent of review x corresponding to grade average y = 3.3 then we have

3.3 = -.00028 x^2 + .06 x + .5.

This equation is easily solved using the quadratic formula, remembering to put the equation into the required form a x^2 + b x + c = 0.

We get two solutions, x = 69 and x = 146. Our solutions are therefore 69% grade review, which is realistically within the 0 - 100% range, and 146%, which we might reject as being outside the range of possibility.

To get a range you would solve two equations, on each for the percent of review for the lower and higher ends of the range.

In many models the attempt to solve for a 4.0 average results in an expression which includes the square root of a negative number; this indicates that there is no real solution and that a 4.0 is not possible. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat grade average corresponds to the given percent of review (give grade average also)?

Your solution

The projected grade for a person who gives 80% of the reviewed assignments should expect a 3.32 according to my equation.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Here you plug in your percent of review for the variable. For example if your model is y = -.00028 x^2 + .06 x + .5 and the percent of review is 75, you plug in 75 for x and evaluate the result. The result gives you the grade average corresponding to the percent of review according to the model. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qHow well does your model fit the data (support your answer)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You should have evaluated your function at each given percent of review-i.e., at 0, 10, 20, 30, . 100 to get the predicted grade average for each. Comparing your results with the given grade averages shows whether your model fits the data. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qillumination vs. distance

Give your data in the form of illumination vs. distance ordered pairs.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(1, 935.1395)

(2, 264.4411)

(3, 105.1209)

(4, 61.01488)

(5, 43.06238)

(6, 25.91537)

(7, 19.92772)

(8, 16.27232)

(9, 11.28082)

(10, 9.484465)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION: (1, 935.1395)

(2, 264..4411)

(3, 105.1209)

(4, 61.01488)

(5, 43.06238)

(6, 25.91537)

(7, 19.92772)

(8, 16.27232)

(9, 11.28082)

(10, 9.484465)**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat three points on your graph did you use as a basis for your model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(2,264.4411)

(6,25.91537)

(10,9.484465)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED:

(2, 264.4411)

(4, 61.01488)

(8, 16.27232) **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

264.4411=4A + 2B + C

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 4a + 2b + c = 264.4411**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

25.91537=26A +6B+ C

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 16a + 4b + c = 61.01488**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the third of your three equations.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

9.484465= 100A + 10B + C

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 64a + 8b + c = 16.27232**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the first of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

254.956535=96A+8B

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 48a + 4b = -44.74256**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qGive the second of the equations you got when you eliminated c.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

16.430905=32A-4B

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: 60a + 6b = -248.16878**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qExplain how you solved for one of the variables.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I used both equations that C had been eliminated for and multiplied the second one by 2 to cancel out B

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: I solved for a by eliminating the variable b. I multiplied the first new equation by 4 and the second new equation by -6 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat values did you get for a and b?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A=6.9404 and B=-115.155

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: a = 15.088, b = -192.24 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat did you then get for c?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

C=466.989

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: c = 588.5691**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your function model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y=6.9404A -115.155B + 466.989

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: y = (15.088) x^2 - (192.24)x + 588.5691 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is your illumination prediction for the given distance (give distance also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The distance needed to be predicted for 1.6 earth distances from the sun. my prediction was 300.50842 W/m^2 when 1.6 is plugged into the equation.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT SOLUTION CONTINUED: The given distance was 1.6 Earth distances from the sun. My illumination prediction was 319.61 w/m^2, obtained by evaluating my function model for x = 1.6. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat distances correspond to the given illumination range (give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The given illumination range was 25-100 Watts per square meter.

When plugged into my equation gave me around 10.56 and 6.02 for 25 wats and 12.2899 and 4.301 for 100 Watts per square meter

@&

What did you plug into the equation, and how did you get your solutions?

*@

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100.

Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qWhat distances correspond to the given illumination range (give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The given illumination range was 25-100 Watts per square meter.

When plugged into my equation gave me around 10.56 and 6.02 for 25 wats and 12.2899 and 4.301 for 100 Watts per square meter

@&

What did you plug into the equation, and how did you get your solutions?

*@

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100.

Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

*********************************************

Question: `qWhat distances correspond to the given illumination range (give illumination range also)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The given illumination range was 25-100 Watts per square meter.

When plugged into my equation gave me around 10.56 and 6.02 for 25 wats and 12.2899 and 4.301 for 100 Watts per square meter

@&

What did you plug into the equation, and how did you get your solutions?

*@

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The precise solution depends on the model and the range of averages.

For example if the model is y =9.4 r^2 - 139 r + 500 and the illumination range is 25 to 100 we would find the distance r corresponding to illumination y = 25, then the distance r corresponding to illumination y = 100, by solving the equations

25=9.4 r^2 - 139 r + 500

and

100 =9.4 r^2 - 139 r + 500

Both of these equations are easily solved using the quadratic formula, remembering to put both into the required form a r^2 + b r + c = 0. Both give two solutions, only one solution of each having and correspondence at all with the data.

The solutions which correspond to the data are

r = 3.9 when y = 100 and r = 5.4 when y = 25.

So when the distance x has range 3.9 - 5.4 the illumination range is 25 to 100.

Note that a quadratic model does not fit this data well. Sometimes data is quadratic in nature, sometimes it is not. We will see as the course goes on how some situations are accurately modeled by quadratic functions, while others are more accurately modeled by exponential or power functions. **

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!#*&!

@&

Well done, but be sure to see my notes about documenting how you got your results. A brief outline of what you did is often OK; it's often unnecessary to show all the details of every step.

Still, it's clear you know what you're doing here.

*@