query 19

#$&*

course Mth 173

7/21/13 around 11 am

019. `query 19

*********************************************

Question: `qQuery problem 3.4.27 was 3.4.29 (3d edition 3.4.20) was 4.4.12 Derivative of `sqrt( (x^2*5^x)^3

What is the derivative of the given function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

sqrt( (x^2*5^x)^3

= (x^2*5^x)^3/2

z=f(x) = x^2*5^x

w(z)= z^3/2

f’(x)= x^2 * d/dx(5^x) +5^x*d/dx(x^2)

=x^2(ln5)5^x+2x5^x

w’(z)=(3/2z)^1/2

dw/dx=w’(z)f’(x)

=(3/2z)^1/2 (x^2 *ln5*5^x+2x*5^x)

=3/2(x^2 *ln5*5^x + 2x *5^x) sqrt(x^2*5^x)

=5^x*(3/2)[x^2*ln5+2x]sqrt(x^2*5^x)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The function is `sqrt( (x^2 * 5^x)^3 ) = (x^2 * 5^x)^(3/2).

This is of form f(g(x)) with g(x) = x^2 * 5^x and f(z) = z^(3/2). Thus when you substitute you get f(g(x)) = g(x)^(3/2) = (x^2 * 5^x)^(3/2).

(x^2 * 5^x) ' = (x^2)' * 5^x + x^2 * (5^x) ' =

2x * 5^x + x^2 ln 5 * 5^x =

(2x + x^2 ln 5) * 5^x.

`sqrt(z^3) = z^(3/2), so using w(x) = f(g(x)) with f(z) = z^(3/2) and g(x) = x^2 * 5^x we get

w ' = (2x + x^2 ln 5) * 5^x * [3/2 (x^2 * 5^x)^(1/2)] = 3/2 (2x + x^2 ln 5) * | x | * 5^(1/2 x).

Note that sqrt(x^2) is | x |, not just x, since the square root must be positive and x might not be. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery problem 3.4.26 was 3.4.28 (3d edition 3.4.19) (was 4.4.20) derivative of 2^(5t-1).

What is the derivative of the given function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The derivative of 2^(5t-1) is as follows

=g(x)=5t-1

=f(z)=2^z

=f’(z)= ln(2) (2^z)

=g’(x)=5

=5ln(2) [2^(5t-1)]

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThis function is a composite. The inner function is g(x)=5t-1 and the outer function is f(z)=2^z.

f'(z)=ln(2) * 2^z.

g ' (x)=5

so

(f(g(t)) ' = g ' (t)f ' (g(t))=

5 ln(2) * 2^(5t-1).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q**** Query 3.4.67 was 3.4.68 (3d edition 3.4.56) y = k (x), y ' (1) = 2.

What is the derivative of k(2x) when x = 1/2?

What is the derivative of k(x+1) when x = 0?

{]What is the derivative of k(x/4) when x = 4?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

derivative of k(2x) when x = 1/2

=d/dx (k(2x))=2k’(2x)

=2k’(2(1/2))

=2k’(1)

=2(2)=4

****

derivative of k(x+1) when x = 0

=d/dx (k(x+1)=k’(x+1)

=k’(0+1)

=k’(1)

=2

*****

derivative of k(1/4x) when x = 4

=d/dx (k(1/4x))=1/4k’(1/4x)

=1/4k’(1/4(4))

=1/4k’(1)

=1/4(2)=1/2

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** We apply the Chain Rule:

( k(2x) ) ' = (2x) ' * k'(2x) = 2 k(2x).

When x = 1/2 we have 2x = 1.

k ' (1) = y ' (1) = 2 so

when x = 1/2

( k(2x) ) ' = 2 k(2 * 1/2) = 2 * k'(1) = 2 * 2 = 4.

(k(x+1)) ' = (x+1)' k ' (x+1) = k ' (x+1) so

when x = 0 we have

(k(x+1) ) ' = k ' (x+1) = k ' (1) = 2

(k(x/4)) ' = (x/4)' k'(x/4) = 1/4 * k'(x/4) so when x = 4 we have

(k(x/4))' = 1/4 * k'(x/4) = 1/4 k'(4/4) = 1/4 * 2 = 1/2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery 3.4.81 (3d edition 3.4.68). Q = Q0 e^(-t/(RC)). I = dQ/dt.

Show that Q(t) and I(t) both have the same time constant.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Q = Q0 e^(-t/(RC)). I = dQ/dt

=t<0, I = dQ/dt

=dQ0/dt

=0

t >=0, i=dQ/dt

=d/dt (Q0^e^(1/RC)

=-(Q0/RC)e^(1/RC)

***

These values cannot be continuous at t=0.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** We use the Chain Rule.

(e^(-t/(RC)))' = (-t/(RC))' * e^(-t/(RC)) = -1/(RC) * e^(-t/(RC)).

So dQ/dt = -Q0/(RC) * e^(-t/(RC)).

Both functions are equal to a constant factor multiplied by e^(-t/(RC)).

The time constant for both functions is therefore identical, and equal to RC. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery problem 3.5.5 (unchanged since 3d edition) (formerly 4.5.6). What is the derivative of sin(3x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

derivative of sin(3x) is..

=f’(x)=d/dx(sin 3x)

=cos3x (d/dx 3x)

=3cos(3x)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** sin(3x) is the composite of g(x) = 3x, which is the 'inner' function (the first function that operates on the variable x) and the 'outer' function f(z) = sin(z).

Thus f(g(x)) = sin(g(x)) = sin(3x).

The derivative is (f (g(x) ) ' = g ' (x) * f' ( g(x) ).

g ' (x) = (3x) ' = 3 * x ' = 3 ', and

f ' (z) = (sin(z) ) ' = cos(z).

So the derivative is [ sin(3x) ] ' = ( f(g(x) ) ' = g ' (x) * f ' (g(x) ) = 3 * cos(3x). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery problem 3.5.50 was 3.5.48 (3d edition 3.5.50) (formerly 4.5.36). Give the equations of the tangent lines to graph of y = sin(x) at x = 0 and at `pi/3

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f(x)= sinx at x=0 and at x=pi/3

y=sin(0)=0

slope=y’=cos(0)=1

x=pi/3

y=sin(pi/3)=sqrt(3)/2

slope=y’=cos(pi/3)=.5

y-y1= m (x-x1)

y- sqrt(3)/2= .5(x- pi/3)

y=.5(x-pi/3)+sqrt(3)/2

y=.5x-.5pi/3+sqrt(3)/2

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** At x = 0 we have y = 0 and y ' = cos(0) = 1.

The tangent line is therefore the line with slope 1 through (0,0), so the line is y - 0 = 1 ( x - 0) or just y = x.

At x = `pi/3 we have y = sin(`pi/3) = `sqrt(3) / 2 and y ' = cos(`pi/3) = .5.

Thus the tangent line has slope .5 and passes thru (`pi/3,`sqrt(3)/2), so its equation is

y - `sqrt(3)/2 = .5 (x - `pi/3)

y = .5 x - `pi/6 + `sqrt(3)/2. Approximating:

y - .87 = .5 x - .52. So

y = .5 x + .25, approx.

Our approximation to sin(`pi/6), based on the first tangent line:

The first tangent line is y = x. So the approximation at x = `pi / 6 is

y = `pi / 6 = 3.14 / 6 = .52, approximately.

Our approximation to sin(`pi/6), based on the second tangent line, is:

y = .5 * .52 + .34 = .60.

`pi/6 is equidistant from x=0 and x=`pi/3, so we might expect the accuracy to be the same whichever point we use.

The actual value of sin(`pi/6) is .5. The approximation based on the tangent line at x = 0 is .52, which is much closer to .5 than the .60 based on the tangent line at x = `pi/3.

The reason for this isn't too difficult to see. The slope is changing more quickly around x = `pi/3 than around x = 0. Thus the tangent line will move more rapidly away from the actual function near x = `pi/3 than near x = 0. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery 3.5.34 (3d edition 3.5.40). Der of sin(sin x + cos x)

What is the derivative of the given function and how did you find it?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

the derivative of sin(sin x + cos x)

g’(x)= (sin(x) + cos(x))’

= cos(x)-sin(x)

f’(z)= sin(z)’

=cos(z)

g’(x) * f’(g(x))

= cos(x)-sin(x) * cos(sin(x) + cos(x))

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe function y = sin( sin(x) + cos(x) ) is the composite of g(x) = sin(x) + cos(x) and f(z) = sin(z).

The derivative of the composite is g ' (x) * f ' (g(x) ).

g ' (x) = (sin(x) + cos(x) ) ' = cos(x) - sin(x).

f ' (z) = sin(z) ' = cos(z).

So g ' (x) * f ' (g(x)) = ( cos(x) - sin(x) ) * cos( sin(x) + cos(x) ).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

&#Good work. Let me know if you have questions. &#