course Phy 202 Am i supposed to email you the solutions to the problems in the book? Or do i just do them to get the concept of whats going on in this section? cQثZԯѬassignment #002
......!!!!!!!!...................................
16:13:44 query introset 5 # 12: Finding the conductivity given rate of energy flow, area, temperatures, thickness of wall. Describe how we find the conductivigy given the rate of energy flow, area, temperatures, and thickness of the wall?
......!!!!!!!!...................................
RESPONSE --> Thermal Energy is conducted proportional to temperature gradient and area of object. It is expressed as R = k x dT/dA x A
.................................................
......!!!!!!!!...................................
16:14:39 Explain how energy flow, for a given material, is affected by area (e.g., is it proportional to area, inversely proportional, etc.), thickness and temperature gradient.
......!!!!!!!!...................................
RESPONSE --> Energy flow is proportional to the area but is inversly proportional to thickness.
.................................................
......!!!!!!!!...................................
16:15:03
......!!!!!!!!...................................
RESPONSE --> Ok i understand
.................................................
......!!!!!!!!...................................
16:16:32 principles of physics and general college physics 13.8: coeff of expansion .2 * 10^-6 C^-1, length 2.0 m. What is expansion along length if temp increases by 5.0 C?
......!!!!!!!!...................................
RESPONSE --> alpha * L0 * `dT = .2 * 10^-6 C^(-1) * 2.0 m * 5.0 C = 2 * 10^-6 m
.................................................
......!!!!!!!!...................................
16:17:16 The amount of the expansion is the product of the coefficient of expansion, the original length and the temperature difference: `dL = alpha * L0 * `dT = .2 * 10^-6 C^(-1) * 2.0 m * 5.0 C = 2 * 10^-6 m. This is 2 microns, two-onethousandths of a millimeter. By contrast the coefficient of expansion of steel is 12 * 10^-6 C^(-1);using this for the coefficient of expansion yields a change in length of 24 * 10^-6 m, or 24 microns, which is 240 times as much as for the given alloy.
......!!!!!!!!...................................
RESPONSE --> I understand. As the metal heats up it expands to a certain degree.
.................................................
......!!!!!!!!...................................
16:18:20 query general phy 13.12: what is the coefficient of volume expansion for quartz, and by how much does the volume change? (Note that Principles of Physics and University Physics students do not do General Physics problems)
......!!!!!!!!...................................
RESPONSE --> 1 x 10^(-6) C^(-1)
.................................................
......!!!!!!!!...................................
16:18:29 ** The coefficient of volume expansion for quartz is 1 x 10^(-6) C^(-1). The sphere has diameter 8.75 cm, so its volume is 4/3 pi r^3 = 4/3 pi ( 4.38 cm)^3 = 352 cm^3, approx.. We therefore have dV = beta* V0*dT = 3 x 10^(-6) C^ (-1) * 352 cm^3 * (200C - 30 C) = 0.06 cm^3 **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:18:41 query univ 17.103 (15.93 10th edition) (Note that Principles of Physics and General College Physics students don't do University Physics problems).
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:18:48 ** The ice doesn't change temperature until it's melted, at which time it is in the form of water with the specific heat of water. Also the steam will come to temperature Tf so its change in thermal energy after being condensted will be 4186 J / (kg K) * .035 kg * (Tf - 100 C). I prefer to say that the sum of all the thermal energy changes is zero, so that we don't have to worry about taking a negative of a negative (which you should have done on your right-hand side, and which would have avoided the negative result). I would write the equation as follows: [.446 kg * 390 J/kg*K * (Tf - 0 C)] + [0.0950 kg * 4186 J/kg*K *(Tf - 0 C)] - .0350 kg * 2.256 x 10^6 J/kg + 4186 J / (kg K) * .035 kg * (Tf - 100 C) = 0. Noting that change in temperature of a Kelvin degree is identical to a change of a Celsius degree this gives you 170 J/C * Tf + 390 J/C * Tf - 79000 J - 14000 J + 140 J / C * Tf = 0 or 700 J / C * Tf = 93000 J, approx. or Tf = 130 C. This isn't possible--we can't end up warmer than the original temperature of the steam. We conclude that not all the steam condenses and that the system therefore reaches equilibrium at 100 C, with a mixture of water and steam. Our energy conservation equation will therefore be [.446 kg * 390 J/kg*C * (100 C - 0 C)] + [0.0950 kg * 4186 J/kg*C *(100 C - 0 C)] - mCondensed * 2.256 x 10^6 J/kg = 0 where mCondensed is the mass of the condensed steam. This gives us 17000 J + 39000 J - mCondensed * 2.3 * 10^6 J/kg = 0 or mCondensed = 56000 J / (2.3 * 10^6 J/kg) = .023 kg. We end up with .095 kg * .023 kg = .118 kg of water and .035 kg - .023 kg = .012 kg of steam. **
......!!!!!!!!...................................
RESPONSE --> ok
.................................................
......!!!!!!!!...................................
16:19:02 query univ phy 17.100 (90 in 10th edition): C = 29.5 J/mol K + (8.2 + 10^-3 J/mol K^2) T . Give your solution to this problem.
......!!!!!!!!...................................
RESPONSE --> N/A
.................................................
......!!!!!!!!...................................
16:21:05 ** Specific heat is not constant but varies with temperature. The energy required to raise the temperature of 3 moles by dT degrees while at temperature T is 3 mol * C * dT = 3 mol * (29.5 J/mol K + (8.2 + 10^-3 J/mol K^2) T) * dT. You have to integrate this expression from T= 27 C to T = 227 C, which is from 300 K to 500 K. Antiderivative of (29.5 J/mol K + (8.2 + 10^-3 J/mol K^2) T) is F(T) = 29.5 J / (mol K) * T + (8.2 + 10^-3 J/mol K^2) * T^2 / 2. Simplify and apply Fundamental Theorem of Calculus (find F(500) - F(300) if you think the temperature T is in Kelvin or F(227) - F(27) if you think it's in Celsius; this isn't specified in the problem and while the units tend to imply Kelvin temperature the resulting specific heats would be unrealistic for most real substances), then multiply by the constant 3 moles. The result for Kelvin temperatures is about 20,000 Joules. **
......!!!!!!!!...................................
RESPONSE --> i understand
.................................................
......!!!!!!!!...................................
16:21:17 University Physics Problem 17.106 (10th edition 15.96): Give your solution.
......!!!!!!!!...................................
RESPONSE --> N/A
.................................................
......!!!!!!!!...................................
16:21:32 **The final mass of the system is .525 kg, meaning that .525 kg - (.340 kg + .150 kg) = .035 kg of steam condensed then cooled to 71 C. The thermal energy change of the calorimeter plus the water is .150 kg * 420 J/(kg C) * 56 C + .34 kg * 4187 J / (kg C) * 56 C = 83,250 J, approx. The thermal energy change of the condensed water is -Hf * .035 kg + .035 kg * 4187 J / (kg C) * (-29 C) = -Hf * .035 kg - 2930 J, approx. Net thermal energy change is zero, so we have 83,250 J - Hf * .035 kg - 4930 J = 0 so that Hf = 79,000 J / (.035 kg) = 2,257,000 J / kg. **
......!!!!!!!!...................................
RESPONSE --> N/A to this specific problem
.................................................