assignment #005 005. `query 4 Physics II 02-28-2009 ?????g???????assignment #005 005. `query 4 Physics II 02-28-2009 z?????????????assignment #005 005. `query 4 Physics II 02-28-2009
......!!!!!!!!...................................
16:11:42 query introset plug of water from cylinder given gauge pressure, c-s hole area, length of plug. Explain how we can determine the velocity of exiting water, given the pressure difference between inside and outside, by considering a plug of known cross-sectional area and length?
......!!!!!!!!...................................
RESPONSE --> The volume of the plug is A * L so its mass is rho * A * L. Thus we have mass rho * A * L with KE equal to P * A * L. v = sqrt( 2 P / rho).
.................................................
......!!!!!!!!...................................
16:11:54 ** The net force on the plug is P * A, where A is its cross-sectional area and P the pressure difference. If L is the length of the plug then the net force P * A acts thru dist L doing work P * A * L. If init vel is 0 and there are no dissipative forces, this is the kinetic energy attained by the plug. The volume of the plug is A * L so its mass is rho * A * L. Thus we have mass rho * A * L with KE equal to P * A * L. Setting .5 m v^2 = KE we have .5 rho A L v^2 = P A L so that v = sqrt( 2 P / rho). **
......!!!!!!!!...................................
RESPONSE --> okie doke
.................................................
......!!!!!!!!...................................
16:12:50 The density of air at common atmospheric temperature and pressure it about 1.3 kg / m^3. The volume of the room is 4.8 m * 3.8 m * 2.8 m = 51 m^3, approximately. The mass of the air in this room is therefore mass = density * volume = 1.3 kg / m^3 * 51 m^3 = 66 kg, approximately. This is a medium-sized room, and the mass is close to the average mass of a medium-sized person.
......!!!!!!!!...................................
RESPONSE --> ok i get it. I couldnt locate the problem in my book.
.................................................
......!!!!!!!!...................................
16:14:24 The density of blood is close to that of water, 1000 kg / m^3. So the pressure difference corresponding to a height difference of 1.6 m is pressure difference = rho g h = 1000 kg/m^3 * 9.80 m/s^2 * 1.60 m = 15600 kg / ( m s^2) = 15600 (kg m / s^2) / m^2 = 15600 N / m^2, or 15600 Pascals. 1 mm of mercury is 133 Pascals, so 15,600 Pa = 15,600 Pa * ( 1 mm of Hg / 133 Pa) = 117 mm of mercury. Blood pressures are measured in mm of mercury; e.g. a blood pressure of 120 / 70 stands for a systolic pressure of 120 mm of mercury and a diastolic pressure of 70 mm of mercury.
......!!!!!!!!...................................
RESPONSE --> ok, I get this also
.................................................
......!!!!!!!!...................................
16:15:13 ** The volume of the balloon is about 4/3 pi r^3 = 1660 cubic meters and mass of air displaced is about 1.3 kg / m^3 * 1660 m^3 = 2160 kg. The buoyant force is equal in magnitude to the force of gravity on the displaced air, or about 2160 kg * 9.8 m/s^2 = 20500 Newtons, approx.. If the total mass of the balloon, including helium, is 930 kg then the net force is about buoyant force - weight = 20,500 N - 9100 N = 11,400 N If the 930 kg doesn't include the helium we have to account also for the force of gravity on its mass. At about .18 kg/m^3 the 1660 m^3 of helium will have mass about 300 kg on which gravity exerts an approximate force of 2900 N, so the net force on the balloon would be around 11,400 N - 2900 N = 8500 N approx. The mass that can be supported by this force is m = F / g = 8500 N / (9.8 m/s^2) = 870 kg, approx.. **
......!!!!!!!!...................................
RESPONSE --> Once again couldnt locate it in the book, but i get how it was obtained
.................................................
......!!!!!!!!...................................
16:16:23 ** At the interface the pressure is that of the atmosphere plus 15 cm of water, or 1 atm + 1000 kg/m^3 * 9.8 m/s^2 * .15 m = 1 atm + 1470 Pa. The 15 cm of water above the water-mercury interface must be balanced by the mercury above this level on the other side. Since mercury is 13.6 times denser than water there must therefore be 15 cm / (13.6) = 1.1 cm of mercury above this level on the other side. This leaves the top of the water column at 15 cm - 1.1 cm = 13.9 cm above the mercury-air interface. } Here's an alternative solution using Bernoulli's equation, somewhat more rigorous and giving a broader context to the solution: Comparing the interface between mercury and atmosphere with the interface between mercury and water we see that the pressure difference is 1470 Pa. Since velocity is zero we have P1 + rho g y1 = P2 + rho g y2, or rho g (y1 - y2) = P2 - P1 = 1470 Pa. Thus altitude difference between these two points is y1 - y2 = 1470 Pa / (rho g) = 1470 Pa / (13600 kg/m^2 * 9.8 m/s^2) = .011 m approx. or about 1.1 cm. The top of the mercury column exposed to air is thus 1.1 cm higher than the water-mercury interface. Since there are 15 cm of water above this interface the top of the water column is 15 cm - 1.1 cm = 13.9 cm higher than the top of the mercury column. NOTE BRIEF SOLN BY STUDENT: Using Bernoullis Equation we come to: 'rho*g*y1='rho*g*y2 1*10^3*9.8*.15 =13.6*10^3*9.8*y2 y2=.011 m h=y1-y2 h=.15-.011=.139m h=13.9cm. **
......!!!!!!!!...................................
RESPONSE --> ok i get this one too
.................................................
You then start the process over with the next question, clicking on the Next Question/Solution button at top left, etc.