#$&* course mth 151 If your solution to stated problem does not match the given solution, you should self-critique per instructions at
.............................................
Given Solution: To say that y is proportional to x is to say that there exists some constant number k such that y = k x. Using the given values of y and x we can determine the value of k: Since y = 9 when x = 12, y = k x becomes 9 = k * 12. Dividing both sides by 12 we obtain 9 / 12 = k. Reducing and reversing sides we therefore obtain k =.75. Now our proportionality reads y = .75 x. Thus when x = 32 we have y = .75 * 32 = 24. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q002. If y is proportional to the square of x, and y = 8 when x = 12, then what is the value of y when x = 9? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y=kx^2 8/144=k*12^2/144 1/18=k y=1/18*9^2 1/18*81/1=4.5 y=4.5 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To say that y is proportional to x is to say that there exists some constant number k such that y = k x^2. Using the given values of y and x we can determine the value of k: Since y = 8 when x = 12, y = k x^2 becomes 8 = k * 12^2, or 8 = 144 k. Dividing both sides by 144 we obtain k = 8 / 144 = 1 / 18. Now our proportionality reads y = 1/18 x^2. Thus when x = 9 we have y = 1/18 * 9^2 = 81 / 18 = 4.5. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q003. If y is inversely proportional to x and if y = 120 when x = 200, when what is the value of y when x = 500? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y=k/x 20*120=k/200*200 24,000=k y=24000/500 k=480 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To say that y is inversely proportional to x is to say that there exists some constant number k such that y = k / x. Using the given values of y and x we can determine the value of k: Since y = 120 when x = 200, y = k / x becomes 120 = k / 200. Multiplying both sides by 200 we obtain k = 120 * 200 = 24,000. Now our proportionality reads y = 24,000 / x. Thus when x = 500 we have y = 24,000 / 500 = 480. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q004. If y is inversely proportional to the square of x and if y = 8 when x = 12, then what is the value of y when x = 16? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 8=k/x^2 8=k/12^2 144*8=k/144*144 k=1152 y=1152/16^2 1152/256 y=4.5 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To say that y is inversely proportional to the square of x is to say that there exists some constant number k such that y = k / x^2. Using the given values of y and x we can determine the value of k: Since y = 8 when x = 12, y = k / x^2 becomes 8 = k / 12^2, or 8 = k / 144. Multiplying both sides by 144 we obtain k = 8 * 144 = 1152. Now our proportionality reads y = 1152 / x^2. Thus when x = 16 we have y = 1152 / (16)^2 = 4.5. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q005. If y is proportional to the square of x and inversely proportional to z, then if y = 40 when x = 10 and z = 4, what is the value of y when x = 20 and z = 12? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y=kx^2 4*40=k*10^2/4*4 160/100=k*10^2 100k/100 k=1.6 y=1.6*20^2/12 1.6*400/12 640/12 y=53.3333 y=53 1/3 confidence rating #$&*:3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To say that y is proportional to the square of x and inversely proportional to z is to say that the there exists a constant k such that y = k x^2 / z. Substituting the given values of x, y and z we can evaluate k: y = k x^2 / z becomes 40 = k * 10^2 / 4. Multiplying both sides by 4 / 10^2 we obtain 40 * 4 / 10^2 = k, or k = 1.6. Our proportionality is now y = 1.6 x^2 / z, so that when x = 20 and z = 12 we have y = 1.6 * 20^2 / 12 = 1.6 * 400 / 12 = 53 1/3. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q006. If y is proportional to x^2, with y = 9 when x = 2, what is the value of y when x = 17? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 9=k*2^2 9/4=k*4/4 k=2.25 y=2.25*17^2 y=650.25 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ********************************************* Question: `q007. If y is inversely proportional to x^3, with y = 9 when x = 7, then what is the value of y when x = 2? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 9=k/7^3 9=k/343 k=3087 y=3087/8 y=385.875 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ ------------------------------------------------ Self-critique Rating: