query 53

#$&*

course mth 151

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

024. `query 24

*********************************************

Question: `q5.2.6 does 17 + 51 verify Goldbach for 68

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

17+51

68

no-51 is not prime (17*3)

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The Goldbach conjecture says that every even number greater than 2 can be expressed as the sum of two primes.

17 + 51 = 68 would verify the Goldbach conjecture except that 51 is not prime (51 = 3 * 17).

So this sum does not verify the Goldbach conjecture.

A sum that would satisfy the conjecture for 68 is 31 + 37 = 68, since 31 and 37 are both prime.

COMMON ERROR AND INSTRUCTOR COMMENT: false 68 isn't a prime number

Close, but 68 is the number being tested, which doesn't have to be prime (in fact since the conjecture addresses even numbers greater than two cannot be prime). The number being tested by the Goldback Conjecture is to be 'an even number greater than 2', which cannot be a prime number. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery 5.2.20 if 95 abundant or deficient?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1+19+5=25 it is deficient

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a**The proper factors of 95 are 1, 5 and 19.

These proper factors add up to 25.

Since the sum of the proper factors is less than 95, we say that 95 is deficient. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q5.2.36 p prime and a, p rel prime then a^(p-1) - 1 div by p

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3^(5-1)-1=3^4=80

80/5=16----Yes

2^(7-1)-1

2^6=64-1

63

63/7=9 ----Yes

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** This result is verified for both a=3, p=5 and a=2, p=7:

If a = 3 and p = 5 then a and p have no common factors, so the conditions hold. We get a^((p-1))-1 = 3^(5-1) - 1 = 3^4 - 1 = 81 - 1 = 80.

This number is to be divisible by p, which is 5. We get 80 / 5 = 16, so in this case a^(p-1)-1 is divisible by p.

If a = 2 and p = 7 then a and p have no common factors, so the conditions hols. We get a^((p-1))-1 = 2^(7-1) - 1= 2^7 - 1 = 64 - 1 = 63.

This number is to be divisible by p, which is 7. We get 63 / 7 = 9, so in this case a^(p-1)-1 is again divisible by p. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q5.2.36 p prime and a, p rel prime then a^(p-1) - 1 div by p

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3^(5-1)-1=3^4=80

80/5=16----Yes

2^(7-1)-1

2^6=64-1

63

63/7=9 ----Yes

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** This result is verified for both a=3, p=5 and a=2, p=7:

If a = 3 and p = 5 then a and p have no common factors, so the conditions hold. We get a^((p-1))-1 = 3^(5-1) - 1 = 3^4 - 1 = 81 - 1 = 80.

This number is to be divisible by p, which is 5. We get 80 / 5 = 16, so in this case a^(p-1)-1 is divisible by p.

If a = 2 and p = 7 then a and p have no common factors, so the conditions hols. We get a^((p-1))-1 = 2^(7-1) - 1= 2^7 - 1 = 64 - 1 = 63.

This number is to be divisible by p, which is 7. We get 63 / 7 = 9, so in this case a^(p-1)-1 is again divisible by p. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

#*&!

&#This looks good. Let me know if you have any questions. &#