initial probs

s{ЁmY{̬} Student Name: assignment #001 001. typewriter notation

......!!!!!!!!...................................

09:50:31 `q001. Explain the difference between x - 2 / x + 4 and (x - 2) / (x + 4).

......!!!!!!!!...................................

RESPONSE --> you must do what is inside the parentheses first and then solve the rest of the equation

.................................................

......!!!!!!!!...................................

09:50:48 The order of operations dictates that grouped expressions must be evaluated first, that exponentiation must be done before multiplication or division, which must be done before addition or subtraction.

It makes a big difference whether you subtract the 2 from the 2 or divide the -2 by 4 first. If there are no parentheses you have to divide before you subtract:

2 - 2 / 2 + 4 = 2 - 1 + 4 (do multiplications and divisions before additions and subtractions) = 5 (add and subtract in indicated order)

If there are parentheses you evaluate the grouped expressions first:

(x - 2) / (x - 4) = (2 - 2) / ( 4 - 2) = 0 / 2 = 0.

......!!!!!!!!...................................

RESPONSE -->

.................................................

......!!!!!!!!...................................

09:51:32 `q002. Explain the difference between 2 ^ x + 4 and 2 ^ (x + 4). Then evaluate each expression for x = 2.

Note that a ^ b means to raise a to the b power. This process is called exponentiation, and the ^ symbol is used on most calculators, and in most computer algebra systems, to represent exponentiation.

......!!!!!!!!...................................

RESPONSE --> the exponent in the first equation is just x and the exponent in the second equation is x + 4

.................................................

......!!!!!!!!...................................

09:51:51 2 ^ x + 4 indicates that you are to raise 2 to the x power before adding the 4.

2 ^ (x + 4) indicates that you are to first evaluate x + 4, then raise 2 to this power.

If x = 2, then

2 ^ x + 4 = 2 ^ 2 + 4 = 2 * 2 + 4 = 4 + 4 = 8.

and

2 ^ (x + 4) = 2 ^ (2 + 4) = 2 ^ 6 = 2*2*2*2*2*2 = 64.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

09:53:01 `q003. What is the numerator of the fraction in the expression x - 3 / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x? What is the denominator? What do you get when you evaluate the expression for x = 2?

......!!!!!!!!...................................

RESPONSE --> the numerator is x - 3 and the denominator is [ (2x-5)^2 * 3x + 1 ]

.................................................

......!!!!!!!!...................................

09:53:11 The numerator is 3. x isn't part of the fraction. / indicates division, which must always precede subtraction. Only the 3 is divided by [ (2x-5)^2 * 3x + 1 ] and only [ (2x-5)^2 * 3x + 1 ] divides 3.

If we mean (x - 3) / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x we have to write it that way.

The preceding comments show that the denominator is [ (2x-5)^2 * 3x + 1 ]

Evaluating the expression for x = 2:

- 3 / [ (2 * 2 - 5)^2 * 3(2) + 1 ] - 2 + 7*2 =

2 - 3 / [ (4 - 5)^2 * 6 + 1 ] - 2 + 14 = evaluate in parenthese; do multiplications outside parentheses

2 - 3 / [ (-1)^2 * 6 + 1 ] -2 + 14 = add inside parentheses

2 - 3 / [ 1 * 6 + 1 ] - 2 + 14 = exponentiate in bracketed term;

2 - 3 / 7 - 2 + 14 = evaluate in brackets

13 4/7 or 95/7 or about 13.57 add and subtract in order.

The details of the calculation 2 - 3 / 7 - 2 + 14:

Since multiplication precedes addition or subtraction the 3/7 must be done first, making 3/7 a fraction. Changing the order of the terms we have

2 - 2 + 14 - 3 / 7 = 14 - 3/7 = 98/7 - 3/7 = 95/7.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

09:55:05 `q004. Explain, step by step, how you evaluate the expression (x - 5) ^ 2x-1 + 3 / x-2 for x = 4.

......!!!!!!!!...................................

RESPONSE --> subsitute 4 for all x's and then begin to solve 3/2

.................................................

......!!!!!!!!...................................

09:55:23 We get

(4-5)^2 * 4 - 1 + 3 / 1 - 4 = (-1)^2 * 4 - 1 + 3 / 4 - 2 evaluating the term in parentheses = 1 * 4 - 1 + 3 / 4 - 2 exponentiating (2 is the exponent, which is applied to -1 rather than multiplying the 2 by 4 = 4 - 1 + 3/4 - 2 noting that 3/4 is a fraction and adding and subtracting in order we get = 1 3/4 = 7 /4 (Note that we could group the expression as 4 - 1 - 2 + 3/4 = 1 + 3/4 = 1 3/4 = 7/4).

COMMON ERROR:

(4 - 5) ^ 2*4 - 1 + 3 / 4 - 2 = -1 ^ 2*4 - 1 + 3 / 4-2 = -1 ^ 8 -1 + 3 / 4 - 2.

INSTRUCTOR COMMENTS:

There are two errors here. In the second step you can't multiply 2 * 4 because you have (-1)^2, which must be done first. Exponentiation precedes multiplication.

Also it isn't quite correct to write -1^2*4 at the beginning of the second step. If you were supposed to multiply 2 * 4 the expression would be (-1)^(2 * 4).

Note also that the -1 needs to be grouped because the entire expression (-1) is taken to the power. -1^8 would be -1 because you would raise 1 to the power 8 before applying the - sign, which is effectively a multiplication by -1.

......!!!!!!!!...................................

RESPONSE --> ok

Your response did not agree with the given solution in all details, and you should therefore have addressed the discrepancy with a full self-critique, detailing the discrepancy and demonstrating exactly what you do and do not understand about the given solution, and if necessary asking specific questions.

.................................................

wǢMx Student Name: assignment #001 001. Rates

......!!!!!!!!...................................

21:07:07 `q001. You should copy and paste these instructions to a word processor for reference. However you can always view them, as well as everything else that has appeared in this box, by clicking the 'Display Everything' button.

1. For the next question or answer, you click on 'Next Question / Answer' button above the box at top left until a question has been posed. Once a question has been posed you are to answer before you click again on this button.

2. Before clicking for an answer, type your best answer to the current question into the box to the right, then clip on the 'Enter Answer' button.

3. After entering your answer you will click on 'Next Question / Answer' to view the answer to the question. Do not tamper with the information displayed in the left-hand box.

4. If your answer was incorrect, incomplete or would otherwise require revision, you will enter a self-critique. If you learned something from the answer, you need to restate it in your own words in order to reinforce your learning. If there is something you feel you should note for future reference, you should make a note in your own words. Go to the response box (the right-hand box) and type in a self-critique and/or notes, as appropriate. Do not copy and paste anything from the left-hand box, since that information will be saved in any case.

5. If you wish to save your response to your Notes file you may choose to click on the 'Save As Notes' button rather than the 'Enter Answer' button. Doing so will save your work for your future reference. Your work will be saved in a Notes file in the c:\vhmthphy folder. The title of the Notes file will also include the name you gave when you started the program.

6. After clicking either the 'Enter Response' or the 'Save as Notes' button, click on 'Next Question / Answer' and proceed in a similar manner.

In the right-hand box briefly describe your understanding of these instructions, then click 'Enter Answer'.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:07:18 Your answer has been noted. Enter 'ok' in the Response Box and click on Enter Response, then click on Next Question/Answer for the first real question.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:07:46 `q002. Note that there are 10 questions in this assignment. The questions are of increasing difficulty--the first questions are fairly easy but later questions are very tricky. The main purposes of these exercises are to refine your thinking about rates, and to see how you process challenging information. Continue as far as you can until you are completely lost. Students who are prepared for the highest-level math courses might not ever get lost.

If you make $50 in 5 hr, then at what rate are you earning money?

......!!!!!!!!...................................

RESPONSE --> 10/hour

.................................................

......!!!!!!!!...................................

21:08:02 The rate at which you are earning money is the number of dollars per hour you are earning. You are earning money at the rate of 50 dollars / (5 hours) = 10 dollars / hour. It is very likely that you immediately came up with the $10 / hour because almosteveryone is familiar with the concept of the pay rate, the number of dollars per hour. Note carefully that the pay rate is found by dividing the quantity earned by the time required to earn it. Time rates in general are found by dividing an accumulated quantity by the time required to accumulate it.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:08:58 `q003.If you make $60,000 per year then how much do you make per month?

......!!!!!!!!...................................

RESPONSE --> 5000/month

.................................................

......!!!!!!!!...................................

21:09:04 Most people will very quickly see that we need to divide $60,000 by 12 months, giving us 60,000 dollars / (12 months) = 5000 dollars / month. Note that again we have found a time rate, dividing the accumulated quantity by the time required to accumulate it.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:09:29 `q004. Suppose that the $60,000 is made in a year by a small business. Would be more appropriate to say that the business makes $5000 per month, or that the business makes an average of $5000 per month?

......!!!!!!!!...................................

RESPONSE --> an average since it is a business not an employee

.................................................

......!!!!!!!!...................................

21:09:39 Small businesses do not usually make the same amount of money every month. The amount made depends on the demand for the services or commodities provided by the business, and there are often seasonal fluctuations in addition to other market fluctuations. It is almost certain that a small business making $60,000 per year will make more than $5000 in some months and less than $5000 in others. Therefore it is much more appropriate to say that the business makes and average of $5000 per month.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:10:49 `q005. If you travel 300 miles in 6 hours, at what average rate are you covering distance, and why do we say average rate instead of just plain rate?

......!!!!!!!!...................................

RESPONSE --> you are covering about 50 mph, it is an average rate because it could be more or less in an hour 50 is an average rate not exact for every hour

.................................................

......!!!!!!!!...................................

21:10:57 The average rate is 50 miles per hour, or 50 miles / hour. This is obtained by dividing the accumulated quantity, the 300 miles, by the time required to accumulate it, obtaining ave rate = 300 miles / ( 6 hours) = 50 miles / hour. Note that the rate at which distance is covered is called speed. The car has an average speed of 50 miles/hour. We say 'average rate' in this case because it is almost certain that slight changes in pressure on the accelerator, traffic conditions and other factors ensure that the speed will sometimes be greater than 50 miles/hour and sometimes less than 50 miles/hour; the 50 miles/hour we obtain from the given information is clearly and overall average of the velocities.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:12:00 `q006. If you use 60 gallons of gasoline on a 1200 mile trip, then at what average rate are you using gasoline, with respect to miles traveled?

......!!!!!!!!...................................

RESPONSE --> you are using a gallon of gas for every 20 miles traveled

.................................................

......!!!!!!!!...................................

21:12:43 The rate of change of one quantity with respect to another is the change in the first quantity, divided by the change in the second. As in previous examples, we found the rate at which money was made with respect to time by dividing the amount of money made by the time required to make it.

By analogy, the rate at which we use fuel with respect to miles traveled is the change in the amount of fuel divided by the number of miles traveled. In this case we use 60 gallons of fuel in 1200 miles, so the average rate it 60 gal / (1200 miles) = .05 gallons / mile.

Note that this question didn't ask for miles per gallon. Miles per gallon is an appropriate and common calculation, but it measures the rate at which miles are covered with respect to the amount of fuel used. Be sure you see the difference.

Note that in this problem we again have here an example of a rate, but unlike previous instances this rate is not calculated with respect to time. This rate is calculated with respect to the amount of fuel used. We divide the accumulated quantity, in this case miles, by the amount of fuel required to cover those miles. Note that again we call the result of this problem an average rate because there are always at least subtle differences in driving conditions that require the use of more fuel on some miles than on others.

It's very important to understand the phrase 'with respect to'. Whether the calculation makes sense or not, it is defined by the order of the terms.

In this case gallons / mile tells you how many gallons you are burning, on the average, per mile. This concept is not as familiar as miles / gallon, but except for familiarity it's technically no more difficult.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:13:16 `q007. The word 'average' generally connotes something like adding two quantities and dividing by 2, or adding several quantities and dividing by the number of quantities we added. Why is it that we are calculating average rates but we aren't adding anything?

......!!!!!!!!...................................

RESPONSE --> because it is over a certain amout of time

.................................................

......!!!!!!!!...................................

21:13:22 The word 'average' in the context of the dollars / month, miles / gallon types of questions we have been answering was used because we expect that in different months different amounts were earned, or that over different parts of the trip the gas mileage might have varied, but that if we knew all the individual quantities (e.g., the dollars earned each month, the number of gallons used with each mile) and averaged them in the usual manner, we would get the .05 gallons / mile, or the $5000 / month. In a sense we have already added up all the dollars earned in each month, or the miles traveled on each gallon, and we have obtained the total $60,000 or 1200 miles. Thus when we divide by the number of months or the number of gallons, we are in fact calculating an average rate.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:14:24 `q008. In a study of how lifting strength is influenced by various ways of training, a study group was divided into 2 subgroups of equally matched individuals. The first group did 10 pushups per day for a year and the second group did 50 pushups per day for year. At the end of the year to lifting strength of the first group averaged 147 pounds, while that of the second group averaged 162 pounds. At what average rate did lifting strength increase per daily pushup?

......!!!!!!!!...................................

RESPONSE --> 14.7 16.2

.................................................

......!!!!!!!!...................................

21:14:32 The second group had 15 pounds more lifting strength as a result of doing 40 more daily pushups than the first. The desired rate is therefore 15 pounds / 40 pushups = .375 pounds / pushup.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

`sc2

.................................................

......!!!!!!!!...................................

21:14:53 `q009. In another part of the study, participants all did 30 pushups per day, but one group did pushups with a 10-pound weight on their shoulders while the other used a 30-pound weight. At the end of the study, the first group had an average lifting strength of 171 pounds, while the second had an average lifting strength of 188 pounds. At what average rate did lifting strength increase with respect to the added shoulder weight?

......!!!!!!!!...................................

RESPONSE --> ?

.................................................

......!!!!!!!!...................................

21:15:06 The difference in lifting strength was 17 pounds, as a result of a 20 pound difference in added weight. The average rate at which strength increases with respect added weight would therefore be 17 lifting pounds / (20 added pounds) = .85 lifting pounds / added pound. The strength advantage was .85 lifting pounds per pound of added weight, on the average.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

`sc3

.................................................

......!!!!!!!!...................................

21:15:32 `q010. During a race, a runner passes the 100-meter mark 12 seconds after the start and the 200-meter mark 22 seconds after the start. At what average rate was the runner covering distance between those two positions?

......!!!!!!!!...................................

RESPONSE --> 11 seconds per 100 meters

.................................................

......!!!!!!!!...................................

21:15:43 The runner traveled 100 meters between the two positions, and required 10 seconds to do so. The average rate at which the runner was covering distance was therefore 100 meters / (10 seconds) = 10 meters / second. Again this is an average rate; at different positions in his stride the runner would clearly be traveling at slightly different speeds.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:16:13 `q011. During a race, a runner passes the 100-meter mark moving at 10 meters / second, and the 200-meter mark moving at 9 meters / second. What is your best estimate of how long it takes the runner to cover the 100 meter distance?

......!!!!!!!!...................................

RESPONSE --> 9.5 seconds

.................................................

......!!!!!!!!...................................

21:16:22 At 10 meters/sec, the runner would require 10 seconds to travel 100 meters. However the runner seems to be slowing, and will therefore require more than 10 seconds to travel the 100 meters. We don't know what the runner's average speed is, we only know that it goes from 10 m/s to 9 m/s. The simplest estimate we could make would be that the average speed is the average of 10 m/s and 9 m/s, or (10 m/s + 9 m/s ) / 2 = 9.5 m/s. Taking this approximation as the average rate, the time required to travel 100 meters will be (100 meters) / (9.5 m/s) = 10.5 sec, approx.. Note that simply averaging the 10 m/s and the 9 m/s might not be the best way to approximate the average rate--for example we if we knew enough about the situation we might expect that this runner would maintain the 10 m/s for most of the remaining 100 meters, and simply tire during the last few seconds. However we were not given this information, and we don't add extraneous assumptions without good cause. So the approximation we used here is pretty close to the best we can do with the given information.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

`sc6

.................................................

......!!!!!!!!...................................

21:17:06 `q012. We just averaged two quantities, adding them in dividing by 2, to find an average rate. We didn't do that before. Why we do it now?

......!!!!!!!!...................................

RESPONSE --> because earlier we were talking about salaries and things happening over a certain amount of time and now we are finding averages of time

.................................................

......!!!!!!!!...................................

21:17:15 In previous examples the quantities weren't rates. We were given the amount of change of some accumulating quantity, and the change in time or in some other quantity on which the first was dependent (e.g., dollars and months, miles and gallons). Here we are given 2 rates, 10 m/s and 9 m/s, in a situation where we need an average rate in order to answer a question. Within this context, averaging the 2 rates was an appropriate tactic.

You need to make note of anything in the given solution that you didn't understand when you solved the problem. If new ideas have been introduced in the solution, you need to note them. If you notice an error in your own thinking then you need to note that. In your own words, explain anything you didn't already understand and save your response as Notes.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

̜Bgz󌞕xڮ{ Student Name: assignment #001

.................................................

......!!!!!!!!...................................

21:18:22 `q001. It will be very important in this course for your instructor to see and understand the process of visualization and reasoning you use when you solve problems. This exercise is designed to give you a first experience with these ideas, and your instructor a first look at your work.

Answer the following questions and explain in commonsense terms why your answer makes sense.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:18:46 For each question draw a picture to make sense out of the situation, and include a description of the picture.

Samples

Sample question and response

Question: If a bundle of shingles covers 30 square feet, how many bundles are required to cover a 600 square foot roof?

Response: We might draw a picture of a rectangle representing the area, dividing the rectangle into a number of smaller rectangles each representing the area covered by a single bundle. This makes it clear that we are dividing the roof area into 1-bundle areas, and makes it clear why we are going to have to divide.

Reasoning this problem out in words, we can say that a single bundle would cover 30 square feet. Two bundles would cover 60 square feet. Three bundles would cover 90 square feet. We could continue in this manner until we reach 600 square feet. However, this would be cumbersome. It is more efficient to use the ideas of multiplication and division.

We imagine grouping the 600 square feet into 30 square foot patches. There will be 600 / 30 patches and each will require exactly one bundle. We therefore require 600 / 30 bundles = 20 bundles.

{}Your responses might not be as clear as the above, though they might be even more clear. I won't be looking for perfection, though I wouldn't object to it, but for a first effort at visualizing a situation and communicating a reasoning process. This is not something you are used to doing and it might take a few attempts before you can achieve good results, but you will get better every time you try.

{}You might be unsure of what to do on a specific question. In such a case specific questions and expressions of confusion are also acceptable responses. Such a response must include your attempts to come up with a picture and reason out an explanation. For example your response might be

Sample expression of confusion:

I've drawn a picture of a pile of bundles and a roof but I'm not sure how to connect the two. I tried multiplying the number of bundles by the square feet of the roof but I got 18,000, and I know it won't take 18,000 bundles to cover the roof. How do you put the area covered by a bundle together with the roof area to get the number of bundles required?

A poor response would be something like 'I don't know how to do #17'. This response reveals nothing of your attempt to understand the question and the situation. Nor does it ask a specific question.

Incidentally, you might be tempted to quote rules or formulas about rates and velocities in answering these questions. Don't. This exercise isn't about being able to memorize rules and quote them. It is about expanding your ability to visualize, reason and communicate.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:19:36 In your own words briefly summarize the instructions and the intent of this exercise.

......!!!!!!!!...................................

RESPONSE --> to make sure that i understand how to tell you what i am trying to do and draw a visual picture by writing what i am doing and what i have tried to do

.................................................

......!!!!!!!!...................................

21:20:00 `q001. If you earn 50 dollars in 5 hours, at what average rate are you earning money, in dollars per hour?

......!!!!!!!!...................................

RESPONSE --> you would divide 50 by 5 to get what you are earning per hour

.................................................

......!!!!!!!!...................................

21:20:31 If you travel 300 miles in 6 hours, at what average rate are you traveling, in miles per hour?

......!!!!!!!!...................................

RESPONSE --> you would divide 300 by 6 to get how many miles you are going in one hour

.................................................

......!!!!!!!!...................................

21:21:00 `q002. If a ball rolling down a grooved track travels 40 centimeters in 5 seconds, at what average rate is the ball moving, in centimeters per second?

......!!!!!!!!...................................

RESPONSE --> you would divide 40 by 5 to get at what rate the ball is moving

.................................................

......!!!!!!!!...................................

21:21:58 The preceding three questions illustrate the concept of a rate. In each case, to find the rate we divided the change in some quantity (the number of dollars or the distance, in these examples) by the time required for the change (the number of hours or seconds, in these examples). Explain in your own words what is meant by the idea of a rate.

......!!!!!!!!...................................

RESPONSE --> the rate is figuring out what the change of quantity of something in a certain amount of time

.................................................

......!!!!!!!!...................................

21:22:13 `q003. If you are earning money at the average rate of 15 dollars per hour, how much do you earn in 6 hours?

......!!!!!!!!...................................

RESPONSE --> you would multiply 15 by 6

.................................................

......!!!!!!!!...................................

21:22:26 If you are traveling at an average rate of 60 miles per hour, how far do you travel in 9 hours?

......!!!!!!!!...................................

RESPONSE --> you would multiply 60 by 9

.................................................

......!!!!!!!!...................................

21:22:41 `q004. If a ball travels at and average rate of 13 centimeters per second, how far does it travel in 3 seconds?

......!!!!!!!!...................................

RESPONSE --> multiply 13 by 3

.................................................

......!!!!!!!!...................................

21:23:07 In the preceding three exercises you turned the concept of a rate around. You were given the rate and the change in the clock time, and you calculated the change in the quantity. Explain in your own words how this increases your understanding of the concept of a rate.

......!!!!!!!!...................................

RESPONSE --> ok

.................................................

......!!!!!!!!...................................

21:23:23 `q005. How long does it take to earn 100 dollars at an average rate of 4 dollars per hour?

......!!!!!!!!...................................

RESPONSE --> divide 100 by 4

.................................................

......!!!!!!!!...................................

21:23:34 How long does it take to travel 500 miles at an average rate of 25 miles per hour?

......!!!!!!!!...................................

RESPONSE --> divide 500 by 25

.................................................

......!!!!!!!!...................................

21:23:46 `q006. How long does it take a rolling ball to travel 80 centimeters at an average rate of 16 centimeters per second?

......!!!!!!!!...................................

RESPONSE --> divide 80 by 16

.................................................

......!!!!!!!!...................................

21:24:37 In the preceding three exercises you again expanded your concept of the idea of a rate. Explain how these problems illustrate the concept of a rate.

......!!!!!!!!...................................

RESPONSE --> it illustrates how do see what happens in hours or minutes or seconds when you are given a larger amount of time that it has happened in

.................................................

ͼξ丐ۙʚ\ Student Name: assignment #001 001. Areas

......!!!!!!!!...................................

21:26:35 `q001. There are 11 questions and 7 summary questions in this assignment.

What is the area of a rectangle whose dimensions are 4 m by 3 meters.

......!!!!!!!!...................................

RESPONSE --> 12meters

.................................................

......!!!!!!!!...................................

21:26:43 A 4 m by 3 m rectangle can be divided into 3 rows of 4 squares, each 1 meter on a side. This makes 3 * 4 = 12 such squares. Each 1 meter square has an area of 1 square meter, or 1 m^2. The total area of the rectangle is therefore 12 square meters, or 12 m^2.

The formula for the area of a rectangle is A = L * W, where L is the length and W the width of the rectangle. Applying this formula to the present problem we obtain area A = L * W = 4 m * 3 m = (4 * 3) ( m * m ) = 12 m^2.

Note the use of the unit m, standing for meters, in the entire calculation. Note that m * m = m^2.

......!!!!!!!!...................................

RESPONSE --> ok

`rp3