#$&* course MTH 279 11:17 am 2/28 Query 05 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.10. Solve 3 y^2 y ' + 2 t = 1 with initial condition y(0) = -1. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 3y^2 dy = 1-2t y^3 = t-t^2 + C y(0) = -1 ---> C = -1 y = (t-t^2 - 1)^1/3 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.18. State a problem whose implicit solution is given by y^3 + t^2 + sin(y) = 4, including a specific initial condition at t = 2. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: t = 2 --> y^3 + sin y = 0 --> y = 0 y(2)= 0 Differentiating implicitly: (3y^2 + cos y) y'= -2t confidence rating #$&*:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: 3.2.24. Solve the equation y / = (y^2 + 2 y + 1) sin(t). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Should be y' = (y^2 + 2 y + 1 ) sin t? 1/(y^2 + 2y + 1) dy = sin t dt -1/(y+1) = -cos t + C (y+1) = -1/(cos t+C) y = -1/(cos t + C) -1
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Self-critique rating: ********************************************* Question: 3.2.28. Match the graphs of the solution curves with the equations y ' = - y^2, y ' = y^3 an dy ' = y ( 4 - y). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: According to the graphs in the book: y'=-y^2 --> Graph C Concave up, asymptote at t = -1 and approaching 0 as t-> inf y'= y^3 --> Graph A Concave up but flipped of A with y --> 0 as t --> -inf and an asymptote at t= 1/2 y'= y(4-y) --> Graph B For one, by exclusion but also because slope of y'-->0 as y--> 4 and y' --> 0 as y --> -inf confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^