#$&* course MTH 279 4:12 pm 4/1 Query 16 Differential Equations********************************************* ********************************************* Question: Find the general solution to y '' - 5 y ' + 2 y = 0 and the unique solution for the initial conditions y (0) = -1, y ' (0) = -5. How does the solution behave as t -> infinity, and as t -> -infinity>? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: r^2 - 5r + 2 =0 r = 1/2(5 ± sqrt 17) y = c1*e^(1/2(5+ sqrt 17)t) + c2*e^(1/2(5- sqrt 17)t) y(0)= -1 = c1+ c2 y'(0)= -5 = c1*(1/2(5+ sqrt 17) + c2 *(1/2(5- sqrt 17) c1≈ -1.1067 c2≈ 0.1067 y = -1.1067*e^(1/2(5+ sqrt 17)t) + 0.1067*e^(1/2(5+ sqrt 17)t) y --> inf as t --> inf y--> 0 as t--> -inf confidence rating #$&*:#8232; Given Solution: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: Find the general solution to 8 y '' - 6 y ' + y = 0 and the unique solution for the initial conditions y (1) = 4, y ' (1) = 3/2. How does the solution behave as t -> infinity, and as t -> -infinity>? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: r^2-3/4*r+1= 0 r= 1/12(3± sqrt 5) y = c1*e^(1/12(3+ sqrt 5)t) +c2*e^(1/12(3- sqrt 5)t) y(1)= 4 = 1.547c1+ 1.0657c2 y'(1)= 3/2 = 0.675c1 + 0.0678c2 c1 = 2.16 c2 = 0.618 y=2.16*e^(1/12(3+ sqrt 5)t) +0.618*e^(1/12(3- sqrt 5)t) Here again, being exponential, y -->inf as t--> inf and y--> 0 as t--> -inf confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: Solve the equation m ( r '' - Omega^2 r) = - k r ' for r(0) = 0, r ' (0) = v_0. Omega is the angular velocity of a centrifuge, m is the mass of a particle and k is drag force constant. Physics students will recognize that m r Omega^2 is the centripetal force required to keep an object of mass m moving in a circle of radius r at angular velocity Omega. The equation models the motion of a particle at the axis which is given initial radial velocity v_0. The mass m of a particle is proportional to its volume, while the drag constant is proportional to its cross-sectional area. Assuming all particles are geometrically similar (and most likely spherical, though this is not necessary as long as they are geometrically similar, but for the sake of an accurate experiment spheres would be preferable), how then does k / m change as the diameter of particles increases? If Omega = 20 revolutions / minute and v_0 = 1 cm / second, with k / m = 4 s^-1, find r( 2 seconds ). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: r''+ k/m r' - omega^2 r= 0 x= 1/2(-k/m ± sqrt ((k/m)^2+4omega^2) which are always real. r = c1e^(1/2(-k/m + sqrt ((k/m)^2+4omega^2)t) + c2*e^(1/2(-k/m - sqrt ((k/m)^2+4omega^2)t) r(0) = 0 --> c1+c2 = 0--> -c1= c2 r'(0)= v_0 --> 1/2(-k/m + sqrt ((k/m)^2+4omega^2)*c1 + 1/2(-k/m - sqrt ((k/m)^2+4omega^2)*c2 = v_0 --> c1= v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] and c2 = -v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] y= v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] *e^(1/2(-k/m ± sqrt ((k/m)^2+4omega^2)t) - v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] *e^(1/2(-k/m ± sqrt ((k/m)^2+4omega^2)t) If r2= 2*r1 then A_CS2 = 4* A_CS1 and V2 = 8*V1 so volume changes faster than cross sectional area meaning m increases faster than k and thus the drag is less and less since m is in the denominator and k/m --> 0. At 5 times r A_CS = 25 and V = 125 meaning 25k/125m = 1/5(m/k) this ratio goes to 0 as r goes to inf. Substitution makes r: r =0.00247e^(4.03t)-0.00247e^(-0.03t) r(2) = 7.82 m
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): That seems like an awfully hair general solution to that equation but r seems to make sense when I subbed in and it comes out right for v_0 = 1 cm/s too. ------------------------------------------------ start Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* ********************************************* Question: Solve the equation m ( r '' - Omega^2 r) = - k r ' for r(0) = 0, r ' (0) = v_0. Omega is the angular velocity of a centrifuge, m is the mass of a particle and k is drag force constant. Physics students will recognize that m r Omega^2 is the centripetal force required to keep an object of mass m moving in a circle of radius r at angular velocity Omega. The equation models the motion of a particle at the axis which is given initial radial velocity v_0. The mass m of a particle is proportional to its volume, while the drag constant is proportional to its cross-sectional area. Assuming all particles are geometrically similar (and most likely spherical, though this is not necessary as long as they are geometrically similar, but for the sake of an accurate experiment spheres would be preferable), how then does k / m change as the diameter of particles increases? If Omega = 20 revolutions / minute and v_0 = 1 cm / second, with k / m = 4 s^-1, find r( 2 seconds ). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: r''+ k/m r' - omega^2 r= 0 x= 1/2(-k/m ± sqrt ((k/m)^2+4omega^2) which are always real. r = c1e^(1/2(-k/m + sqrt ((k/m)^2+4omega^2)t) + c2*e^(1/2(-k/m - sqrt ((k/m)^2+4omega^2)t) r(0) = 0 --> c1+c2 = 0--> -c1= c2 r'(0)= v_0 --> 1/2(-k/m + sqrt ((k/m)^2+4omega^2)*c1 + 1/2(-k/m - sqrt ((k/m)^2+4omega^2)*c2 = v_0 --> c1= v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] and c2 = -v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] y= v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] *e^(1/2(-k/m ± sqrt ((k/m)^2+4omega^2)t) - v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] *e^(1/2(-k/m ± sqrt ((k/m)^2+4omega^2)t) If r2= 2*r1 then A_CS2 = 4* A_CS1 and V2 = 8*V1 so volume changes faster than cross sectional area meaning m increases faster than k and thus the drag is less and less since m is in the denominator and k/m --> 0. At 5 times r A_CS = 25 and V = 125 meaning 25k/125m = 1/5(m/k) this ratio goes to 0 as r goes to inf. Substitution makes r: r =0.00247e^(4.03t)-0.00247e^(-0.03t) r(2) = 7.82 m
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): That seems like an awfully hair general solution to that equation but r seems to make sense when I subbed in and it comes out right for v_0 = 1 cm/s too. ------------------------------------------------ start Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&! ********************************************* ********************************************* Question: Solve the equation m ( r '' - Omega^2 r) = - k r ' for r(0) = 0, r ' (0) = v_0. Omega is the angular velocity of a centrifuge, m is the mass of a particle and k is drag force constant. Physics students will recognize that m r Omega^2 is the centripetal force required to keep an object of mass m moving in a circle of radius r at angular velocity Omega. The equation models the motion of a particle at the axis which is given initial radial velocity v_0. The mass m of a particle is proportional to its volume, while the drag constant is proportional to its cross-sectional area. Assuming all particles are geometrically similar (and most likely spherical, though this is not necessary as long as they are geometrically similar, but for the sake of an accurate experiment spheres would be preferable), how then does k / m change as the diameter of particles increases? If Omega = 20 revolutions / minute and v_0 = 1 cm / second, with k / m = 4 s^-1, find r( 2 seconds ). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: r''+ k/m r' - omega^2 r= 0 x= 1/2(-k/m ± sqrt ((k/m)^2+4omega^2) which are always real. r = c1e^(1/2(-k/m + sqrt ((k/m)^2+4omega^2)t) + c2*e^(1/2(-k/m - sqrt ((k/m)^2+4omega^2)t) r(0) = 0 --> c1+c2 = 0--> -c1= c2 r'(0)= v_0 --> 1/2(-k/m + sqrt ((k/m)^2+4omega^2)*c1 + 1/2(-k/m - sqrt ((k/m)^2+4omega^2)*c2 = v_0 --> c1= v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] and c2 = -v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] y= v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] *e^(1/2(-k/m ± sqrt ((k/m)^2+4omega^2)t) - v_0/[(1/2(-k/m + sqrt ((k/m)^2+4omega^2) -1/2(-k/m - sqrt ((k/m)^2+4omega^2)] *e^(1/2(-k/m ± sqrt ((k/m)^2+4omega^2)t) If r2= 2*r1 then A_CS2 = 4* A_CS1 and V2 = 8*V1 so volume changes faster than cross sectional area meaning m increases faster than k and thus the drag is less and less since m is in the denominator and k/m --> 0. At 5 times r A_CS = 25 and V = 125 meaning 25k/125m = 1/5(m/k) this ratio goes to 0 as r goes to inf. Substitution makes r: r =0.00247e^(4.03t)-0.00247e^(-0.03t) r(2) = 7.82 m
.............................................
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): That seems like an awfully hair general solution to that equation but r seems to make sense when I subbed in and it comes out right for v_0 = 1 cm/s too. ------------------------------------------------ start Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!#*&!