#$&* course MTH 279 6:10 pm 3/31 Seems query 13 was a repeat of some of query 12's questions Query 14 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Decide whether y_1 = e^(-t) and y_2 = 2 e^(1 - t) are solutions to the equation y '' + 2 y ' + y = 0. If so determine whether the two solutions are linearly independent. If the solutions are linearly independent then find the general solution, as well as a particular solution for which y (0) = 1 and y ' (0) = 0. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Substitution confirms these are solutions y= e^-t, y'=-e^-t, y''= e^-t y= 2e^(1-t), y'= -2e^(1-t), y''= 2e^(1-t) W= e^-t*(-2e^(1-t))-(-e^-t)*2e^(1-t) = 0 So they're not lin ind and 2e^1 *(e^(-t))= 2e^(1-t) confidence rating #$&*:8232;Given Solution: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Suppose y_1 and y_2 are solutions to the equation y '' + alpha y ' + beta y = 0 and that y_1 = e^(2 t). Suppose also that the Wronskian is e^(-t). What are the values of alpha and beta? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y1= e^2t, y1'= 2e^2t, y1''=4e^2t 4e^2t+alpha*2e^2t+beta*e^2t =0 4+2alpha+beta= 0 W= e^-t = e^2t * y2' - y2*2e^2t y'2-2y2= e^-3t So y2 must be multiple of e^-3t Ae^-3t - 2Ae^-3t = e^-3t A = -1 y2 = -e^-3t, y2'= 3e^-3t, y2''= -9e^-3t -9+3alpha-beta =0 4+2alpha+beta= 0 alpha = 1, beta =-6 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ 04-01-2011