#$&* course MTH 279 2:28 pm 4/1 Query 15 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Are y1 = 2 e^(-2 t) cos(t) and y2 = e^(-2 t) sin(t) solutions to the equation y '' + 4 y ' + 5 y = 0? What are the initial conditions at t = 0? Is {y1, y2} a fundamental set? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y1= 2 e^(-2 t) cos(t) y1'= -4e^(-2 t)cos(t)- 2e^(-2 t)sin(t) y1''= 8e^(-2 t)cos(t) + 4e^(-2 t)sin(t) +4e^(-2 t)sin(t) - 2e^(-2 t)cos(t) [8e^(-2 t)cos(t) + 4e^(-2 t)sin(t) +4e^(-2 t)sin(t) - 2e^(-2 t)cos(t)]+4[-4e^(-2 t)cos(t)- 2e^(-2 t)sin(t)]+5[2 e^(-2 t) cos(t)] = 0 Factor out e^(-2 t) and combine like terms e^-2t[(8 cost - 2 cos t - 16 cos t + 10 cos t) + (4 sin t + 4 sin t - 8 sin t)] =0 The two parenthesis both = 0 so y1 is a solution. The book just has e^(-2 t) cos(t) but the 2 is consistent throughout and any constant multiple would work. We can easily see that a similar process for y2 would yield the same results all we have to do is replace sin and cos and arrange some signs. y2= e^-2t sin t y2' = -2e^-2t sin t+ e^-2t cos t y2''= 4e^-2t sin t - 2e^-2t cos t -2e^-2t cos t - e^-2t sin t sin t: 4-1-8+5 = 0 cos t: -2 -2 +4 = 0 Conditions at t=0: y1(0)= 2, y1'(0)=-4, y1''(0)= 6 y2(0)= 0, y2'(0)=1, y2''(0)= -4 det [[y1, y2][y1', y2']] = 2e^-2t This only equals 0 at t = inf
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: y1_bar = 2 y1 - 2 y2 and y2_bar = y1 - y2. Is {y1_bar, y2_bar} a fundamental set? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Form matrix det: det [[2, -2][1, -1]] = -2+2 =0 So not a fundamental set Seems kind of obvious since 2*(y2) = y1 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Is {e^t, 2 e^(-t), sinh (t) } a fundamental set on the interval (-infinity, infinity)? Show that the functions y1 = t and y2 = | t | are linearly dependent on the interval t > 0, but are linearly independent on the interval -infinity < t < infinity. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: All three expressions are defined on the interval. Can't do a 2x3 det but det [[e^t, 2e^-t][e^t, -2e^-t]] =-4 det [[sinh t, 2e^(-t)][cosh t, -2e^(-t)]] = -2 det [[sinh t, e^t][cosh t, e^t]] = 1 so they are linearly independent
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ________________________________________ #$&* 04-01-2011