#$&* course MTH 279 4/6 3:41 pm I submitted to other queries that on Friday that haven't been posted Query 17 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Solve the equation 3 y '' + 2 sqrt(3) y ' + y = 0, y(0) = 2 sqrt(3), y ' (0) = 3 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: r^2 + 2/3* sqrt 3*r + 1/3= 0 real repeated: r_1=- sqrt 3/3 y = c1e^(- sqrt 3/3t) + c2te^(- sqrt 3/3t) sub and solve for c1 and c2 c1+c2= 2 sqrt 3 - sqrt 3/3 c1 + c2 = 3 c1 = 0.294 c2= 3.17 y = 0.294e^(- sqrt 3/3t) + 3.17t*e^(- sqrt 3/3t)
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Solve the equation y '' - 2 cot(t) y ' + (1 + 2 cot^2 t) y = 0, which has known solution y_1(t) = sin(t) You will use reduction of order, find intervals of definition and interval(s) where the Wronskian is continuous and nonzero. See your text for a more complete statement of this problem. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y2= u(t)* sin t y2' = u'*sin t + u*cos t y2''= u''* sin t + u'*cos t + u'*cos t - u sin t sub in (u''* sin t + u'*cos t + u'*cos t - u sin t) - 2*(cos t/sin t)(u'*sin t + u*cos t)+(1+2(cos t/sin t)^2)(u*sin t) = 0 Everything but the u'' reduces to 0 u'' sin t = 0 u''= 0 Don't really need reduction of order to do this but sub v = u' v' = u'' v' sin t = 0 v'= c1= u' u' = c1t + c2 y2 = (c1*t+c2)*sin t I'm going to assume that c1 = 1 and c2 = 0 based on y1 y1'= cos t y2'= sin t + t cos t W = sin t( sin t + t cos t) - sin t * cos t = sin^2 t W is continuous everywhere but is nonzero when only sin t is nonzero which is when t = n*π, where n = +Z Intervals of solutions occur between n and n±1, i.e. -π < t < π, π < t < 2π, etc The original eq is written in the desired form and p(t) = -2 cot t, which exists everywhere except where sin t = 0 and that matches the intervals just given q(t) = 1+2 cot^2 t, which also exists on the same intervals confidence rating #$&*:8232; ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ________________________________________ #$&* 04-05-2011