#$&* course MTH 279 5/3 2:08 pm Query 22 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the limit as t -> 0 of the matrix [ sin(t) / t, t cos(t), 3 / (t + 1); e^(3 t), sec(t), 2 t / (t^2 - 1) ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: [1, 0, 3; 1, 1, 0] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find A ' (t) and A ''(t), where the derivatives are with respect to t and the matrix is A = [ sin(t), 3 t; t^2 + 2, 5 ] pictured as YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A'= [ cos t, 3; 2t, 0] A''= [ -sin t, 0; 2, 0] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Write the system of equations y_1 ' = t^2 y_1 + 3 y_2 + sec(t) y_2 ' = sin(t) y _1 + t y_2 - 5 in the form y ' = P(t) y + g(t), where P(t) is a 2 x 2 matrix and y and g(t) are 2 x 1 column vectors. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: [y_1; y_2]' = [t^2, 3; sin t, t][ y_1; y_2] + [sec t; -5] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If A '' = [1, t; 0, 0] with A(0) = [ 1, 1; -2, 1] A(1) = [-1, 2; -2, 3 ] then what is the matrix A(t)? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: A' = [t+a1, 1/2t^2+ b1; c1, d1] A = [ 1/2t^2 + a1t+a2, 1/6t^3 + b1t+b2; c1t + c2, d1t+d2] a1 = -5/2, a2 = 1 b1= 5/6, b2 = 1 c1 = 0, c2 = -2 d1 = 2, d2 = 1 then A= [ 1/2t^2 + -5/2t+1, 1/6t^3 + 5/6t+1; -2, 2t+1] Confidence rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Find the matrix A(t), defined by A(t) = integral( B(s) ds, s from 0 to t), where B = [ e^s, 6s; cos(2 pi s), sin(2 pi s) ]. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: integrate B [ e^s, 3s^2; 1/2π sin 2πs, -1/2π cos 2πs] evaluate A = [e^t -1, 3t^2; (1/2π sin(2π*t)), (-1/2π cos (2π*t)+ 1/2π)] Confidence rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!