#$&* course MTH 279 5/4 11:24 am Query 25 Differential Equations*********************************************
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Determine whether the set of solutions {y_1, y_2, y_3} is linearly independent, where y_1 = [ 1, sin^2(t), 0] y_2 = [ 0, 2 - 2 cos^2(t), -2] y_3 = [ 1, 0, 1] YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: psi = [1, 0, 1; sin^2 t, 2-2cos^2 t, 0; 0, -2, 1] W = det psi = 2-2(cos^2 t + sin^2 t)= 0 so not linearly independent confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: Determine whether there is a matrix P(t) such that y_1 = [ t^2, 0 ] y_2 = [ 2t, 1 ] is a fundamental set of solutions to the equation y ' = P(t) y. If so, find such a matrix P(t). Hint: The matrix psi(t) = [y_1, y_2 ] = [ t^2, 2 t; 0, 1 ] would need to satisfy psi ' (t) = P(t) psi(t). In standard notation we could write this as follows: satisfies YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: psi = [ t^2, 2t; 0, 1] W = det psi = t^2 ≠ 0 so Fundamental psi' = [2t, 2; 0, 0] psi^-1 = 1/t^2*[1, -2t; 0, t^2] = [1/t^2, -2/t; 0, 1/t] psi'*psi^-1 = P(t) = [2t, 2; 0, 0]* [1/t^2, -2/t; 0, 1/t]= [2/t, -4; 0, 0] confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: If the matrix psi(t) = [y_1, y_2] = [e^t, e^(-t); e^t, - e^(-t)]: What are the vector functions y_1 and y_2? Write out the system of two differential equations represented by the equation y ' = P(t) y with P(t) = [0, 1; 1, 0]. Show that y_1 and y_2 are both solutions of the equation y ' = P(t) y with P(t) = [0, 1; 1, 0]. Show that { y_1 , y_2} is a fundamental set for this equation. Show that the matrix psi(t) is a solution of the matrix equation psi ' = P(t) psi. Show that the matrix psi(t) is a fundamental matrix for the linear system of equations. Let psi_hat(t) = [ 2 e^t - e^(-t), e^t + 3 e^(-t); 2 e^t + e^(-t), e^t - 3e^(-t) ]. Find a constant matrix C such that psi_hat(t) = psi(t) * C. Based on your matrix C, is psi_hat(t) a solution matrix for the system? Based on your matrix C, is psi_hat(t) a fundamental matrix for the system? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y_1 = [e^t; e^t] y_2 = [e^-t; -e^-t] Here's trouble for me in writing out the individual eqs in the system y_1' = P*y_2 y_2' = P*y_1 this is based on section 6.3 but is clearly not right but y_1' = P*y_1 and y_2' = P*y_2 does work so that y_1 and y_2 are solutions to that system but not to the one I came up with
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique rating:" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!