course Phy 232 011. `Query 10
.............................................
Given Solution: ** As wavelength decreases you can fit more half-waves onto the string. You can fit one half-wave, or 2 half-waves, or 3, etc.. So you get 1 half-wavelength = string length, or wavelength = 2 * string length; using `lambda to stand for wavelength and L for string length this would be 1 * 1/2 `lambda = L so `lambda = 2 L. For 2 wavelengths fit into the string you get 2 * 1/2 `lambda = L so `lambda = L. For 3 wavelengths you get 3 * 1/2 `lambda = L so `lambda = 2/3 L; etc. Your wavelengths are therefore 2L, L, 2/3 L, 1/2 L, etc.. FOR A STRING FREE AT ONE END: The wavelengths of the first few harmonics are found by the node - antinode distance between the ends. The first node corresponds to 1/4 wavelength. The second harmonic is from node to antinode to node to antinode, or 4/3. the third and fourth harmonics would therefore be 5/4 and 7/4 respectively. ** Your Self-Critique: OK Your Self-Critique rating #$&* OK ********************************************* Question: **** Given the wavelengths of the first few harmonics and the velocity of a string, how do we determine the frequencies of the first few harmonics? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: &&&&&& ****** v/lambda = frequency ****** &&&&&& confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The frequency is the number of crests passing per unit of time. We can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength. The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment. This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength. ** Your Self-Critique: OK Your Self-Critique rating #$&* OK ********************************************* Question: **** Given the tension and mass density of a string how do we determine the velocity of the wave in the string? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: &&&&&& ****** v^2 = T/(m/length) v = sqrt(m/length) ****** &&&&&& confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** We divide tension by mass per unit length: v = sqrt ( tension / (mass/length) ). ** Your Self-Critique: OK Your Self-Critique rating #$&* OK ********************************************* Question: query univ phy problem 15.48 (19.32 10th edition) y(x,t) = .75 cm sin[ `pi ( 250 s^-1 t + .4 cm^-1 x) ] What are the amplitude, period, frequency, wavelength and speed of propagation? &&&&& ***** y(x,t) = .75sin[pi ( 250 s^-1 t + .4 cm^-1 x)] a) Amplitude = .75cm Wavelength = 2/(.4rad/cm) = 5cm Frequency = omega/(2pi) = 250pis^-1/(2pi) = 125 Hz T = 1/f = 0.008s v = lambda*f = 125s^-1*5cm = 625cm/s ***** &&&&& confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** y(x, t) = A sin( omega * t + k * x), where amplitude is A, frequency is omega / (2 pi), wavelength is 2 pi / x and velocity of propagation is frequency * wavelength. Period is the reciprocal of frequency. For A = .75 cm, omega = 250 pi s^-1, k = .4 pi cm^-1 we have A=.750 cm frequency is f = 250 pi s^-1 / (2 pi) = 125 s^-1 = 125 Hz. period is T = 1/f = 1 / (125 s^-1) = .008 s wavelength is lambda = (2 pi / (.4 * pi cm^-1)) = 5 cm speed of propagation is v = frequency * wavelength = 125 Hz * 5 cm = 625 cm/s. Note that v = freq * wavelength = omega / (2 pi) * ( 2 pi ) / k = omega / k. ** STUDENT COMMENT: 2*pi is one full cycle, but since the function is cos, everything is multiplied by pi. So does this mean that the cos function only represents a half a cycle?
.............................................
Given Solution: ** Basic precalculus: For any function f(x) the graph of f(x-h) is translated `dx = h units in the x direction from the graph of y = f(x). The graph of y = sin(k * x - omega * t) = sin(k * ( x - omega / k * t) ) is translated thru displacement `dx = omega / k * t relative to the graph of sin(k x). At t=0, omega * t is zero and we have the original graph of y = .75 cm * sin( k x). The graph of y vs. x forms a sine curve with period 2 pi / k, in this case 2 pi / (pi * .4 cm^-1) = 5 cm which is the wavelength. A complete cycle occurs between x = 0 and x = 5 cm, with zeros at x = 0 cm, 2.5 cm and 5 cm, peak at x = 1.25 cm and 'valley' at x = 3.75 cm. At t=.0005, we are graphing y = .75 cm * sin( k x + .0005 omega), shifted -.0005 * omega / k = -.313 cm in the x direction. The sine wave of the t=0 function y = .75 cm * sin(kx) is shifted -.313 cm, or .313 cm left so now the zeros are at -.313 cm and every 2.5 cm to the right of that, with the peak shifted by -.313 cm to x = .937 cm. At t=.0010, we are graphing y = .75 cm * sin( k x + .0010 omega), shifted -.0010 * omega / k = -.625 cm in the x direction. The sine wave of the t = 0 function y = .75 cm * sin(kx) is shifted -.625 cm, or .625 cm left so now the zeros are at -.625 cm and every 2.5 cm to the right of that, with the peak shifted by -.625 cm to x = +.625 cm. The sequence of graphs clearly shows the motion of the wave to the left at 625 cm / s. ** Your Self-Critique: OK Your Self-Critique rating #$&* OK ********************************************* Question: ** Velocity of propagation is v = sqrt(T/ (m/L) ). Solving for T: v^2 = T/ (m/L) v^2*m/L = T T = (6.25 m/s)^2 * 0.5 kg/m so T = 19.5 kg m/s^2 = 19.5 N approx. ** Your Self-Critique: I really like questions like this. :) Your Self-Critique rating #$&* OK ********************************************* Question: **** What is the average power? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: &&&&& ***** According to the book, P_average = .5sqrt(m/L*F)*omega^2*A^2 ***** &&&&& confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The text gives the equation Pav = 1/2 sqrt( m / L * F) * omega^2 * A^2 for the average power transferred by a traveling wave. Substituting m/L, tension F, angular frequency omeage and amplitude A into this equation we obtain Pav = 1/2 sqrt ( .500 kg/m * 19.5 N) * (250 pi s^-1)^2 * (.0075 m)^2 = .5 sqrt(9.8 kg^2 m / (s^2 m) ) * 62500 pi^2 s^-2 * .000054 m^2 = .5 * 3.2 kg/s * 6.25 * 10^4 pi^2 s^-2 * 5.4 * 10^-5 m^2 = 5.5 kg m^2 s^-3 = 5.5 watts, approx.. The arithmetic here was done mentally so double-check it. The procedure itself is correct. ** Your Self-Critique: I see. Your Self-Critique rating #$&* OK" " 011. `Query 10 ********************************************* Question: **** Query introductory set six, problems 11-14 **** given the length of a string how do we determine the wavelengths of the first few harmonics? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: &&&&&& ****** if you have the length of the string and the number of waves, you can get the wavelength by dividing length of string/waves, and that should be the wavelength. ****** &&&&&& confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** As wavelength decreases you can fit more half-waves onto the string. You can fit one half-wave, or 2 half-waves, or 3, etc.. So you get 1 half-wavelength = string length, or wavelength = 2 * string length; using `lambda to stand for wavelength and L for string length this would be 1 * 1/2 `lambda = L so `lambda = 2 L. For 2 wavelengths fit into the string you get 2 * 1/2 `lambda = L so `lambda = L. For 3 wavelengths you get 3 * 1/2 `lambda = L so `lambda = 2/3 L; etc. Your wavelengths are therefore 2L, L, 2/3 L, 1/2 L, etc.. FOR A STRING FREE AT ONE END: The wavelengths of the first few harmonics are found by the node - antinode distance between the ends. The first node corresponds to 1/4 wavelength. The second harmonic is from node to antinode to node to antinode, or 4/3. the third and fourth harmonics would therefore be 5/4 and 7/4 respectively. ** Your Self-Critique: OK Your Self-Critique rating #$&* OK ********************************************* Question: **** Given the wavelengths of the first few harmonics and the velocity of a string, how do we determine the frequencies of the first few harmonics? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: &&&&&& ****** v/lambda = frequency ****** &&&&&& confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The frequency is the number of crests passing per unit of time. We can imagine a 1-second chunk of the wave divided into segments each equal to the wavelength. The number of peaks is equal to the length of the entire chunk divided by the length of a 1-wavelength segment. This is the number of peaks passing per second. So frequency is equal to the wave velocity divided by the wavelength. ** Your Self-Critique: OK Your Self-Critique rating #$&* OK ********************************************* Question: **** Given the tension and mass density of a string how do we determine the velocity of the wave in the string? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: &&&&&& ****** v^2 = T/(m/length) v = sqrt(m/length) ****** &&&&&& confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** We divide tension by mass per unit length: v = sqrt ( tension / (mass/length) ). ** Your Self-Critique: OK Your Self-Critique rating #$&* OK ********************************************* Question: query univ phy problem 15.48 (19.32 10th edition) y(x,t) = .75 cm sin[ `pi ( 250 s^-1 t + .4 cm^-1 x) ] What are the amplitude, period, frequency, wavelength and speed of propagation? &&&&& ***** y(x,t) = .75sin[pi ( 250 s^-1 t + .4 cm^-1 x)] a) Amplitude = .75cm Wavelength = 2/(.4rad/cm) = 5cm Frequency = omega/(2pi) = 250pis^-1/(2pi) = 125 Hz T = 1/f = 0.008s v = lambda*f = 125s^-1*5cm = 625cm/s ***** &&&&& confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** y(x, t) = A sin( omega * t + k * x), where amplitude is A, frequency is omega / (2 pi), wavelength is 2 pi / x and velocity of propagation is frequency * wavelength. Period is the reciprocal of frequency. For A = .75 cm, omega = 250 pi s^-1, k = .4 pi cm^-1 we have A=.750 cm frequency is f = 250 pi s^-1 / (2 pi) = 125 s^-1 = 125 Hz. period is T = 1/f = 1 / (125 s^-1) = .008 s wavelength is lambda = (2 pi / (.4 * pi cm^-1)) = 5 cm speed of propagation is v = frequency * wavelength = 125 Hz * 5 cm = 625 cm/s. Note that v = freq * wavelength = omega / (2 pi) * ( 2 pi ) / k = omega / k. ** STUDENT COMMENT: 2*pi is one full cycle, but since the function is cos, everything is multiplied by pi. So does this mean that the cos function only represents a half a cycle?
.............................................
Given Solution: ** Basic precalculus: For any function f(x) the graph of f(x-h) is translated `dx = h units in the x direction from the graph of y = f(x). The graph of y = sin(k * x - omega * t) = sin(k * ( x - omega / k * t) ) is translated thru displacement `dx = omega / k * t relative to the graph of sin(k x). At t=0, omega * t is zero and we have the original graph of y = .75 cm * sin( k x). The graph of y vs. x forms a sine curve with period 2 pi / k, in this case 2 pi / (pi * .4 cm^-1) = 5 cm which is the wavelength. A complete cycle occurs between x = 0 and x = 5 cm, with zeros at x = 0 cm, 2.5 cm and 5 cm, peak at x = 1.25 cm and 'valley' at x = 3.75 cm. At t=.0005, we are graphing y = .75 cm * sin( k x + .0005 omega), shifted -.0005 * omega / k = -.313 cm in the x direction. The sine wave of the t=0 function y = .75 cm * sin(kx) is shifted -.313 cm, or .313 cm left so now the zeros are at -.313 cm and every 2.5 cm to the right of that, with the peak shifted by -.313 cm to x = .937 cm. At t=.0010, we are graphing y = .75 cm * sin( k x + .0010 omega), shifted -.0010 * omega / k = -.625 cm in the x direction. The sine wave of the t = 0 function y = .75 cm * sin(kx) is shifted -.625 cm, or .625 cm left so now the zeros are at -.625 cm and every 2.5 cm to the right of that, with the peak shifted by -.625 cm to x = +.625 cm. The sequence of graphs clearly shows the motion of the wave to the left at 625 cm / s. ** Your Self-Critique: OK Your Self-Critique rating #$&* OK ********************************************* Question: ** Velocity of propagation is v = sqrt(T/ (m/L) ). Solving for T: v^2 = T/ (m/L) v^2*m/L = T T = (6.25 m/s)^2 * 0.5 kg/m so T = 19.5 kg m/s^2 = 19.5 N approx. ** Your Self-Critique: I really like questions like this. :) Your Self-Critique rating #$&* OK ********************************************* Question: **** What is the average power? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: &&&&& ***** According to the book, P_average = .5sqrt(m/L*F)*omega^2*A^2 ***** &&&&& confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The text gives the equation Pav = 1/2 sqrt( m / L * F) * omega^2 * A^2 for the average power transferred by a traveling wave. Substituting m/L, tension F, angular frequency omeage and amplitude A into this equation we obtain Pav = 1/2 sqrt ( .500 kg/m * 19.5 N) * (250 pi s^-1)^2 * (.0075 m)^2 = .5 sqrt(9.8 kg^2 m / (s^2 m) ) * 62500 pi^2 s^-2 * .000054 m^2 = .5 * 3.2 kg/s * 6.25 * 10^4 pi^2 s^-2 * 5.4 * 10^-5 m^2 = 5.5 kg m^2 s^-3 = 5.5 watts, approx.. The arithmetic here was done mentally so double-check it. The procedure itself is correct. ** Your Self-Critique: I see. Your Self-Critique rating #$&* OK"