Assignment 35 62

#$&*

course mth 158

8/6/13 10:40pm

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

035. * 35

*********************************************

Question: * 6.2.20 / 6.2.18 / 7th edition 5.2.18. Horiz line test, looks like log.

What did the horizontal line test tell you for this function?

It is a one-to-one function because the horizontal line test does not cross more than one time.

.............................................

Given solution:

There is no horizontal line that passes through this graph more than once. The function is strictly increasing, taking each y value only once. The function is therefore one-to-one on its domain.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: * 6.2.22 / 6.2.18 / 7th edition 5.2.20. Horiz line test, looks like inverted parabola or hyperbola.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Not one-to-one because it crosses twice.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * What did the horizontal line test tell you for this function?

For every horizontal below the 'peak' of this graph the graph will intersect the horizontal line in two points. This function is not one-to-one on the domain depicted here.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: * 6.2.45 / 6.2.43 / 7th edition 5.2.28 looks like cubic thru origin, (1,1), (-1,-1), sketch inverse.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The inverse points are (-1,-1), (0,0) and (1, 2)

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Describe your sketch of the inverse function.

The graph of the function passes through (0, 0), (1,1), and (-1,-1). The inverse function will reverse these coordinates, which will give the same three points.

Between x = -1 and x = 1 the graph of the original function is closer to the x axis than to the y axis, and is horizontal at the origin. The graph of the inverse function will therefore be closer to the y axis than to the x axis for y values between -1 and 1, and will be vertical at the origin.

For x < 1 and for x > 1 the graph lies closer to the y axis than to the x axis. The graph of the inverse function will therefore lie closer to the x axis than to the y axis for y < 1 and for y > 1.

In the first quadrant the function is increasing at an increasing rate. The inverse function will therefore be increasing at a decreasing rate in the first quadrant.

In the third quadrant the function is increasing at a decreasing rate. The inverse function will therefore be increasing at an increasing rate in the third quadrant.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I should have described my graph in more detail, but I think that I must have been looking at a different graph than the one in the solution as those were not the three original points in mine.

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: * 6.2.36 / 6.2.32 / 7th edition 5.2.32 f = 2x + 6 inv to g = 1 / 2 * x - 3.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f (g(x)) = f ( 1/2 x -3) = 2 (1/2x - 3) + 6

= x -6 + 6

=x

g (f(x)) = g (2x + 6) = 1/2 (2x + 6) -3

= 1/2 * 2 (x +3) -3

= x

Yes, they are inverses

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Show that the functions f(x) and g(x) are indeed inverses.

f(g(x)) = 2 g(x) + 6 = 2 ( 1 / 2 * x - 3) + 6 = x - 6 + 6 = x.

g(f(x)) = 1 / 2 * f(x) - 3 = 1/2 ( 2 x + 6) - 3 = x + 3 - 3 = x.

Since f(g(x)) = g(f(x)) = x, the two functions are inverse.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: * 6.2.54 / 6.2.52 / 7th edition 5.2.44. inv of x^3 + 1; domain range etc..

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

f (x) = x^3 + 1

y = x^3 + 1

inverse is x = y^3 + 1

x - 1 = y^3

y = (x-1)^(1/3)

domain and range are all real numbers for both function and inverse function

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Give the inverse of the given function and the other requested information.

The function is y = x^3 + 1. This function is defined for all real-number values of x and its range consists of all real numbers.

If we switch the roles of x and y we get x = y^3 + 1. Solving for y we get

y = (x - 1)^(1/3).

This is the inverse function. We can take the 1/3 power of any real number, positive or negative, so the domain of the inverse function is all real numbers. Any real-number value of y can be obtained by using an appropriate value of x. So both the domain and range of the inverse function consist of all real numbers.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question: * 6.2.66 / 6.2.64 / 7th edition 5.2.56. inv of f(x) = (3x+1)/(-x). Domain and using inv fn range of f.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y =- (3x + 1)/ x

inverse is x = - (3y + 1) / y

confused myself when solving for y, however, until I read the given solution

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * What is the domain of f? What is the inverse function? What does the inverse function tell you about the range of f?

f(x) is defined for all x except x = 0, since division by 0 is not defined.

If we switch x and y in the expression y = (3x + 1) / (-x) we get

x = (3y + 1) / (-y).

To solve for y we first multiply by -y, noting that this excludes y = 0 since multiplication of both sides by 0 would change the solution set. We get

-y * x = -y * (3 y + 1) / (-y). The left-hand side simplifies to - x y and the right-hand side to 3 y + 1, giving us

-x y = 3y + 1. Subtracting 3 y from both sides we get

-x y - 3 y = 1.

Factoring y out of the left-hand side (which becomes (-x - 3) * y; if you multiply this out you see that it is the same as -x y - 3 y) we get

(-x - 3) y = 1, and dividing both sides by (-x - 3), which excludes x = -3, we get

y = -1 / (x + 3).

The domain of this function is the set of all real numbers except 3. Since the domain of the inverse function is the range of the original function, the range of the original function consists of all real numbers except 3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I was thinking too hard into keeping the y by itself on one side, instead of maneuvering it around in order to ultimately get it by itself.

------------------------------------------------

Self-critique Rating: 3"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Good work. Let me know if you have questions. &#