#$&* course Mth 272 10/10 11am 015.
.............................................
Given Solution: `a We let u = x du = dx dv = e^(-x)dx v = -e^(-x) Using u v - int(v du): (x)(-e^(-x)) - int(-e^(-x)) dx Integrate: x(-e^(-x)) - (e^(-x)) + C Factor out e^(-x): e^(-x) (-x-1) + C. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: ‘OK’ ********************************************* Question: `qQuery problem 6.1.7 (was 6.2.3) integrate x^2 e^(-x) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: u = x^2 dv = e^-x du = 2x v = -e^-x x^2(-e^-x) – [int.] 2x(-e^-x) dx = x^2(-e^-x) + 2 [int.] Xe^-x dx = u = -x Du = e^-x dx V = - e^-x = -xe^-x – e^-x + C = x^2(-e^-x) + 2 (-xe^-x – e^-x + C) = -e^-x(x^2 + 2x + 2) + C confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a We perform two integrations by parts. First we use u=x^2 dv=e^-x)dx v= -e^(-x) to obtain -x^(2)e^(-x) - int [ -e^(-x) * 2x dx] =-x^(2)e^(-x) +2int[xe^(-x) dx] We then integrate x e^-x dx: u=x dv=e^(-x)dx v= -e^(-x) from which we obtain -x e^(-x) - int(-e^(-x) dx) = -x e^(-x) - e^(-x) + C Substituting this back into -x^(2)e^(-x) +2int[xe^(-x) dx] we obtain -x^(2)e^(-x) + 2 ( -x e^-x - e^-x + C) = -e^(-x) * [x^(2) + 2x +2] + C. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: ‘OK’ ********************************************* Question: `qQuery problem 6.1.26 (was 6.2.18) integral of 1 / (x (ln(x))^3) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: U = ln/x Du = 1/x du = -1/2u^2 + C = - 1/ (2 ln x^2) + C confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a Let u = ln(x) so that du = 1 / x dx. This gives you 1 / u^3 * du and the rest is straightforward: 1/u^3 is a power function so int(1 / u^3 du) = -1 / (2 u^2) + c. Substituting u = ln(x) we have -1 / (2 ln(x)^2) + c. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: ‘OK’ ********************************************* Question: `qQuery problem 6.1.46 (was 6.2.32) (was 6.2.34) integral of ln(1+2x) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: U = 1 + 2x Du = 2 dx = ½ [int.] ln (u) du U = ln u Du = 1/u Dv = du V = u ½ [u ln u – [int.] u * 1/u du] = u ln u/2 – [int.] du/2 = u ln u/2 – u/2 + C [(1+2x) ln(1 + 2x)] / 2 – (1 + 2x)/2 + C confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a Let u = ln ( 1 + 2x) du = 2 / (1 + 2x) dx dv = dx v = x. You get u v - int(v du) = x ln(1+2x) - int( x * 2 / (1+2x) ) = x ln(1+2x) - 2 int( x / (1+2x) ). The integral is done by substituting w = 1 + 2x, so dw = 2 dx and dx = dw/2, and x = (w-1)/2. Thus x / (1+2x) dx becomes { [ (w-1)/2 ] / w } dw/2 = { 1/4 - 1/(4w) } dw. Antiderivative is w/4 - 1/4 ln(w), which becomes (2x) / 4 - 1/4 ln(1+2x). So x ln(1+2x) - 2 int( x / (1+2x) ) becomes x ln(1+2x) - 2 [ (2x) / 4 - 1/4 ln(1+2x) ] or x ln(1+2x) + ln(1+2x)/2 - x. Integrating from x = 0 to x = 1 we obtain the result .648 approx. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: ‘OK’ ********************************************* Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: "