assignment 15 qa

#$&*

course Mth 272

10/10 11am

015.

*********************************************

Question: `qQuery problem 6.1.6 (was 6.2.2) integrate x e^(-x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

U = x

Dv = e^-x

Du = 1 dx

V = -e^-x

[int.] udu = uv – [int.] vdu

= x(-e^-x) – [int.] –e^-x

= x(e^-x) + [int.] e^-x dx

[int.] e^-x = -e^-x

= -xe^-x – e^-x + C

= e^-x(-x – 1) + C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a We let

u = x

du = dx

dv = e^(-x)dx

v = -e^(-x)

Using u v - int(v du):

(x)(-e^(-x)) - int(-e^(-x)) dx

Integrate:

x(-e^(-x)) - (e^(-x)) + C

Factor out e^(-x):

e^(-x) (-x-1) + C.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

self-critique rating #$&*: ‘OK’

*********************************************

Question: `qQuery problem 6.1.7 (was 6.2.3) integrate x^2 e^(-x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

u = x^2

dv = e^-x

du = 2x

v = -e^-x

x^2(-e^-x) – [int.] 2x(-e^-x) dx

= x^2(-e^-x) + 2 [int.] Xe^-x dx

= u = -x

Du = e^-x dx

V = - e^-x

= -xe^-x – e^-x + C

= x^2(-e^-x) + 2 (-xe^-x – e^-x + C)

= -e^-x(x^2 + 2x + 2) + C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a We perform two integrations by parts.

First we use

u=x^2

dv=e^-x)dx

v= -e^(-x)

to obtain

-x^(2)e^(-x) - int [ -e^(-x) * 2x dx] =-x^(2)e^(-x) +2int[xe^(-x) dx]

We then integrate x e^-x dx:

u=x

dv=e^(-x)dx

v= -e^(-x)

from which we obtain

-x e^(-x) - int(-e^(-x) dx) = -x e^(-x) - e^(-x) + C

Substituting this back into

-x^(2)e^(-x) +2int[xe^(-x) dx] we obtain

-x^(2)e^(-x) + 2 ( -x e^-x - e^-x + C) =

-e^(-x) * [x^(2) + 2x +2] + C.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

self-critique rating #$&*: ‘OK’

*********************************************

Question: `qQuery problem 6.1.26 (was 6.2.18) integral of 1 / (x (ln(x))^3)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

U = ln/x

Du = 1/x du

= -1/2u^2 + C

= - 1/ (2 ln x^2) + C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Let u = ln(x) so that du = 1 / x dx. This gives you 1 / u^3 * du and the rest is straightforward:

1/u^3 is a power function so

int(1 / u^3 du) = -1 / (2 u^2) + c.

Substituting u = ln(x) we have

-1 / (2 ln(x)^2) + c.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

self-critique rating #$&*: ‘OK’

*********************************************

Question: `qQuery problem 6.1.46 (was 6.2.32) (was 6.2.34) integral of ln(1+2x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

U = 1 + 2x

Du = 2 dx

= ½ [int.] ln (u) du

U = ln u

Du = 1/u

Dv = du

V = u

½ [u ln u – [int.] u * 1/u du]

= u ln u/2 – [int.] du/2

= u ln u/2 – u/2 + C

[(1+2x) ln(1 + 2x)] / 2 – (1 + 2x)/2 + C

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Let

u = ln ( 1 + 2x)

du = 2 / (1 + 2x) dx

dv = dx

v = x.

You get

u v - int(v du) = x ln(1+2x) - int( x * 2 / (1+2x) ) =

x ln(1+2x) - 2 int( x / (1+2x) ).

The integral is done by substituting w = 1 + 2x, so dw = 2 dx and dx = dw/2, and x = (w-1)/2.

Thus x / (1+2x) dx becomes { [ (w-1)/2 ] / w } dw/2 = { 1/4 - 1/(4w) } dw.

Antiderivative is w/4 - 1/4 ln(w), which becomes (2x) / 4 - 1/4 ln(1+2x).

So x ln(1+2x) - 2 int( x / (1+2x) ) becomes x ln(1+2x) - 2 [ (2x) / 4 - 1/4 ln(1+2x) ] or

x ln(1+2x) + ln(1+2x)/2 - x.

Integrating from x = 0 to x = 1 we obtain the result .648 approx.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

self-critique rating #$&*: ‘OK’

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

self-critique rating #$&*:

"

&#Good work. Let me know if you have questions. &#

#$&*