#$&* course Mth 272 11/10 2 pm EST 024.
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): #### No solution given. ------------------------------------------------ self-critique rating #$&*: 3 ********************************************* Question: `qWhat is the name of this quadric surface, and why? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: X^2 + y^2/2 x^2 = 0 = Elliptic Cone X^2/a^2 + y^2/b^2 z^2/c^2 = 0 Equated to zero and not one. confidence rating #$&*: 3 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a f z = c, a constant, then x^2 + y^2/2 = c^2, or x^2 / c^2 + y^2 / (`sqrt(2) * c)^2 = 1. This gives you ellipse with major axis c and minor axis `sqrt(2) * c. Thus for any plane parallel to the x-y plane and lying at distance c from the x-y plane, the trace of the surface is an ellipse. In the x-z plane the trace is x^2 - z^2 = 0, or x^2 = z^2, or x = +- z. Thus the trace in the x-z plane is two straight lines. In the y-z plane the trace is y^2 - z^2/2 = 0, or y^2 = z^2/2, or y = +- z * `sqrt(2) / 2. Thus the trace in the y-z plane is two straight lines. The x-z and y-z traces show you that the ellipses in the 'horizontal' planes change linearly with their distance from the x-y plane. This is the way cones grow, with straight lines running up and down from the apex. Thus the surface is an elliptical cone. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ self-critique rating #$&*: OK ********************************************* Question: `qGive the equation of the xz trace of this surface and describe its shape, including a justification for your answer. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: x^2 + y^2/2 z^2 = 0 x^2 = -y2/2 + z^2 x^2 = z^2 confidence rating #$&*: 2 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a The xz trace consists of the y = 0 points, which for z^2 = x^2 + y^2/2 is z^2 = x^2 + 0^2/2 or just z^2 = x^2. The graph of z^2 = x^2 consists of the two lines z = x and z = -x in the yz plane. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): #### How can I successfully construct the graph, and also solve for those two lines in the yz plane?
.............................................
Given Solution: `a If z = 2 then z^2 = x^2 + y^2/2 becomes 2^2 = x^2 + y^2 / 2, or x^2 + y^2 / 2 = 4. This is an ellipse. If we divide both sides by 4 we can get the standard form: x^2 / 4 + y^2 / 8 = 1, or x^2 / 2^2 + y^2 / (2 `sqrt(2))^2 = 1. This is an ellipse with major axis 2 `sqrt(2) in the y direction and 2 in the x direction. "