course phy 202
1:08PM 1-22-10
Question: Suppose you measure the length of a pencil. You use both a triply-reduced ruler and the original ruler itself, and you make your measurements accurate to the smallest mark on each. You then multiply the reading on the triply-reduced ruler by the appropriate scale factor.
Which result is likely to be closer to the actual length of the pencil?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The original ruler would obtain the most accurate results. Also, the reduced ruler would possibly have some optical distortion due to printers not being very accurate.
What factors do you have to consider in order to answer this question and how do they weigh into your final answer?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The triply reduced ruler would be three times as small so it would also be three times as difficult to measure the pencil.
*********************************************
Question: Answer the same questions as before, except assume that the triply-reduced ruler has no optical distortion, and that you also know the scale factor accurate to 4 significant figures.
Which result is likely to be closer to the actual length of the pencil?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Still the actual ruler, because it would be a lot easier to read and if there was any round off errors, it would only come into play one time, not three times like the reduced ruler.
What factors do you have to consider in order to answer this question and how do they weigh into your final answer?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The round off error could potentially be a big factor because if you rounded up or down with the reduced ruler, you would then count that round off error three different time when you multiplied the measurement by three.
*********************************************
Question: Suppose you are to measure the length of a rubber band whose original length is around 10 cm, measuring once while the rubber band supports the weight of a small apple and again when it supports the weight of two small apples. You are asked to report as accurately as possible the difference in the two lengths, which is somewhere between 1 cm and 2 cm. You have available the singly-reduced copy and the triply-reduced copy, and your data from the optical distortion experiment.
Which ruler will be likely to give you the more accurate difference in the lengths?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The singly reduced copy of the ruler.
Explain what factors you considered and how they influence your final answer.
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I would much rather measure something with a close to normal size ruler, than a ruler that has been triply reduced on a copy machine.
*********************************************
Question: Later in the course you will observe how the depth of water in a uniform cylinder changes as a function of time, when water flows from a hole near the bottom of the cylinder. Suppose these measurements are made by taping a triply-reduced ruler to the side of a transparent cylinder, and observing the depth of the water at regular 3-second intervals.
The resulting data would consist of a table of water depth vs. clock times, with clock times 0, 3, 6, 9, 12, ... seconds. As depth decreases the water flows from the hole more and more slowly, so the depth changes less and less quickly with respect to clock time.
Experimental uncertainties would occur due to the optical distortion of the copied rulers, due to the spacing between marks on the rulers, due to limitations on your ability to read the ruler (your eyes are only so good), due to timing errors, and due to other possible factors.
Suppose that depth changes vary from 5 cm to 2 cm over the first six 3-second intervals.
Assume also that the timing was very precise, so that there were no significant uncertainties due to timing.
Based on what you have learned in experiments done through Assignment 1, without doing extensive mathematical analysis, estimate how much uncertainty would be expected in the observed depths, and briefly explain the basis for your estimates. Speculate also on how much uncertainty would result in first-difference calculations done with the depth vs. clock time data, and how much in second-difference calculations.
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The uncertainty of this system makes sense, because you would have a triply reduced ruler which would make the measurement uncertainty more profound. The were 6 time intervals and the depths change from 2 cm to 5 cm, which means there is a 3 cm variance. This means there would be approximately .5 cm of variance per 3 second interval. I would guess the variance would decrease because the water will be flowing at a slower rate, which would make it easier to read the ruler.
How would these uncertainties affect a graph of first difference vs. midpoint clock time, and how would they affect a graph of second difference vs. midpoint clock time?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I think the lines would be different because the slope would be changing on the graph, because the uncertainly would decrease as the water flowed at a slower rate from the tube.
How reliably do you think the first-difference graph would predict the actual behavior of the first difference?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv Due to the fact that there is quite a bit of variance there, I dont think the graph would do a very good job representing the behavior.
Answer the same for the second-difference graph.
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv There is probably not as much variation in the second difference as there was in the first, this would probably represent the behavior a little better.
What do you think the first difference tells you about the system? What about the second difference?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv The first difference would tell you the initial behavior of the graph and the second difference would tell you a little more about the behavior of the graph as it approaches its average.
*********************************************
Question: Suppose the actual second-difference behavior of the depth vs. clock time is in fact linear. How nearly do you think you could estimate the slope of that graph from data taken as indicated above (e.g., within 1% of the correct slope, within 10%, within 30%, or would no slope be apparent in the second-difference graph)?
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv You could probably estimate the slope of the graph within about 20% percent of the actual.
Again no extensive analysis is expected, but give a brief synopsis of how you considered various effects in arriving at your estimate.
your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv I think the slope would be hard to find due to the fact that there would be quite a bit of variation due to optical distortion and human involvement, so I think 20 percent would be a reasonable estimate.
Good work. Let me know if you have questions.