Area

#$&*

course Phy 201

September 8th around 4:30 pm

If your solution to stated problem does not match the given solution, you should self-critique per instructions at

http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

qa areas etc

001. Areas

*********************************************

Question: `q001. There are 11 questions and 7 summary questions in this assignment.

What is the area of a rectangle whose dimensions are 4 m by 3 meters.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve for the area of a rectangle, we must multiply length times width.

A = L x W

Therefore, A = 3 x 4, which gives us an area of 12m for the rectangle.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aA 4 m by 3 m rectangle can be divided into 3 rows of 4 squares, each 1 meter on a side. This makes 3 * 4 = 12 such squares. Each 1 meter square has an area of 1 square meter, or 1 m^2. The total area of the rectangle is therefore 12 square meters, or 12 m^2.

The formula for the area of a rectangle is A = L * W, where L is the length and W the width of the rectangle. Applying this formula to the present problem we obtain area A = L * W = 4 m * 3 m = (4 * 3) ( m * m ) = 12 m^2.

Note the use of the unit m, standing for meters, in the entire calculation. Note that m * m = m^2.

FREQUENT STUDENT ERRORS

The following are the most common erroneous responses to this question:

4 * 3 = 12

4 * 3 = 12 meters

INSTRUCTOR EXPLANATION OF ERRORS

Both of these solutions do indicate that we multiply 4 by 3, as is appropriate.

However consider the following:

4 * 3 = 12.

4 * 3 does not equal 12 meters.

4 * 3 meters would equal 12 meters, as would 4 meters * 3.

However the correct result is 4 meters * 3 meters, which is not 12 meters but 12 meters^2, as shown in the given solution.

To get the area you multiply the quantities 4 meters and 3 meters, not the numbers 4 and 3. And the result is 12 meters^2, not 12 meters, and not just the number 12.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

The area of the rectangle is 12 m2, not just 12 meters. This is because we multiplied 4 m times 3 meters, results in m * m.

------------------------------------------------

Self-critique Rating: 2

*********************************************

Question: `q002. What is the area of a right triangle whose legs are 4.0 meters and 3.0 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find the area of a right triangle, we must use the equation A = ˝ b x h

A RIGHT triangle is half of a full rectangle. This is where the ˝ in the equation comes into play. Since we only need half of the rectangle to get the area of the right triangle, we first multiply the base times height to get 12m2.

Since we know the area of a full rectangle is 12m2, and we know that a right triangle is half of a rectangle, we multiply 12m2 x ˝ to get 6m2 for the area of the right triangle.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aA right triangle can be joined along its hypotenuse with another identical right triangle to form a rectangle. In this case the rectangle would have dimensions 4.0 meters by 3.0 meters, and would be divided by any diagonal into two identical right triangles with legs of 4.0 meters and 3.0 meters.

The rectangle will have area A = L * W = 4.0 m * 3.0 m = 12 m^2, as explained in the preceding problem. Each of the two right triangles, since they are identical, will therefore have half this area, or 1/2 * 12 m^2 = 6.0 m^2.

The formula for the area of a right triangle with base b and altitude h is A = 1/2 * b * h.

STUDENT QUESTION

Looking at your solution I think I am a bit rusty on finding the area of triangles. Could you give me a little more details

on how you got your answer?

INSTRUCTOR RESPONSE

As explained, a right triangle is half of a rectangle.

There are two ways to put two right triangles together, joining them along the hypotenuse. One of these ways gives you a rectangle. The common hypotenuse thus forms a diagonal line across the rectangle.

The area of either triangle is half the area of this rectangle.

If this isn't clear, take a blade or a pair of scissors and cut a rectangle out of a piece of paper. Make sure the length of the rectangle is clearly greater than its width. Then cut your rectangle along a diagonal, to form two right triangles.

Now join the triangles together along the hypotenuse. They will either form a rectangle or they won't. Either way, flip one of your triangles over and again join them along the hypotenuse. You will have joined the triangles along a common hypotenuse, in two different ways. If you got a rectangle the first time, you won't have one now. And if you have a rectangle now, you didn't have one the first time.

It should be clear that the two triangles have equal areas (allowing for a little difference because we can't really cut them with complete accuracy).

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q003. What is the area of a parallelogram whose base is 5.0 meters and whose altitude is 2.0 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve for the area of a parallelogram, we must use the equation A = b x h.

We plug in 5 meters for the base (b) and 2 meters for the height (h).

A = 5m x 2m

A = 10 m2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aA parallelogram is easily rearranged into a rectangle by 'cutting off' the protruding end, turning that portion upside down and joining it to the other end. Hopefully you are familiar with this construction. In any case the resulting rectangle has sides equal to the base and the altitude so its area is A = b * h.

The present rectangle has area A = 5.0 m * 2.0 m = 10 m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

Since I made the mistake in the rectangle problem, I remembered to put my answer in meters2

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q004. What is the area of a triangle whose base is 5.0 cm and whose altitude is 2.0 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve, we must use the equation A = ˝ b x h

We must simply plug the appropriate numbers into the equation.

A = ˝ 5cm x 2cm

A = ˝ x 10cm2

A = 5cm2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aIt is possible to join any triangle with an identical copy of itself to construct a parallelogram whose base and altitude are equal to the base and altitude of the triangle. The area of the parallelogram is A = b * h, so the area of each of the two identical triangles formed by 'cutting' the parallelogram about the approriate diagonal is A = 1/2 * b * h. The area of the present triangle is therefore A = 1/2 * 5.0 cm * 2.0 cm = 1/2 * 10 cm^2 = 5.0 cm^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q005. What is the area of a trapezoid with a width of 4.0 km and average altitude of 5.0 km?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aAny trapezoid can be reconstructed to form a rectangle whose width is equal to that of the trapezoid and whose altitude is equal to the average of the two altitudes of the trapezoid. The area of the rectangle, and therefore the trapezoid, is therefore A = base * average altitude. In the present case this area is A = 4.0 km * 5.0 km = 20 km^2.

STUDENT SOLUTION ILLUSTRATING NEED TO USE UNITS IN ALL STEPS

A=Base time average altitude therefore………A=4 *5= 20 km ^2

INSTRUCTOR COMMENT

A = (4 km) * (5 km) = 20 km^2.

Use the units at every step. km * km = km^2, and this is why the answer comes out in km^2.

Try to show the units and how they work out in every step of the solution.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q006. What is the area of a trapezoid whose width is 4 cm in whose altitudes are 3.0 cm and 8.0 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this, we must plug the appropriate numbers into the equation A = w x l

First, we must average the altitudes since there are 2 given.

Therefore, the average altitude is 5.5cm. This is done by adding 3cm and 8cm and then dividing by 2, since there are 2 numbers given for the altitude value.

A = 4cm x 5.5cm

A = 22cm2

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe area is equal to the product of the width and the average altitude. Average altitude is (3 cm + 8 cm) / 2 = 5.5 cm so the area of the trapezoid is A = 4 cm * 5.5 cm = 22 cm^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q007. What is the area of a circle whose radius is 3.00 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find the area of a circle, we must use the equation Pi * r2

We must plug the appropriate numbers into the equation.

Therefore, A = Pi x (3cm)2.

A = 9 x Pi cm2

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe area of a circle is A = pi * r^2, where r is the radius. Thus

A = pi * (3 cm)^2 = 9 pi cm^2.

Note that the units are cm^2, since the cm unit is part r, which is squared.

The expression 9 pi cm^2 is exact. Any decimal equivalent is an approximation. Using the 3-significant-figure approximation pi = 3.14 we find that the approximate area is A = 9 pi cm^2 = 9 * 3.14 cm^2 = 28.26 cm^2, which we round to 28.3 cm^2 to match the number of significant figures in the given radius.

Be careful not to confuse the formula A = pi r^2, which gives area in square units, with the formula C = 2 pi r for the circumference. The latter gives a result which is in units of radius, rather than square units. Area is measured in square units; if you get an answer which is not in square units this tips you off to the fact that you've made an error somewhere.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I forgot to continue the problem and plug the approximate number in for Pi. As stated, this will turn the answer from an exact answer to an approximate answer since Pi is a continuous value.

------------------------------------------------

Self-critique Rating: 2

*********************************************

Question: `q008. What is the circumference of a circle whose radius is exactly 3 cm?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To find the circumference of the circle, we must plug the radius into the equation of

C = 2 x Pi x r

C = 2 x Pi x 3cm = 6 Pi cm

Then, we plug in the Pi value to get an approximate answer

C = 6 x 3.14 cm = 18.8 cm

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe circumference of this circle is

C = 2 pi r = 2 pi * 3 cm = 6 pi cm.

This is the exact area. An approximation to 3 significant figures is 6 * 3.14 cm = 18.8 cm.

Note that circumference is measured in the same units as radius, in this case cm, and not in cm^2. If your calculation gives you cm^2 then you know you've done something wrong.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q009. What is the area of a circle whose diameter is exactly 12 meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve, we must use the equation A = Pi x r2

Then, we plug the corresponding values into the equation.

A = Pi x (6cm) 2

A = Pi x 36 cm

Finally, we plug in the value for Pi to get:

A = 3.14 x 36cm

A = 113.04 cm

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe area of a circle is A = pi r^2, where r is the radius. The radius of this circle is half the 12 m diameter, or 6 m. So the area is

A = pi ( 6 m )^2 = 36 pi m^2.

This result can be approximated to any desired accuracy by using a sufficient number of significant figures in our approximation of pi. For example using the 5-significant-figure approximation pi = 3.1416 we obtain A = 36 m^2 * 3.1416 = 113.09 m^2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q010. What is the area of a circle whose circumference is 14 `pi meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve, we must use the equation A = Pi x r2

Then, we plug in the corresponding values.

I am not sure how to solve with Pi meters.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aWe know that A = pi r^2. We can find the area if we know the radius r. We therefore attempt to use the given information to find r.

We know that circumference and radius are related by C = 2 pi r. Solving for r we obtain r = C / (2 pi). In this case we find that

r = 14 pi m / (2 pi) = (14/2) * (pi/pi) m = 7 * 1 m = 7 m.

We use this to find the area

A = pi * (7 m)^2 = 49 pi m^2.

STUDENT QUESTION:

Is the answer not 153.86 because you have multiply 49 and pi????

INSTRUCTOR RESPONSE

49 pi is exact and easier to connect to radius 7 (i.e., 49 is clearly the square of 7) than the number 153.86 (you can't look at that number and see any connection at all to 7).

You can't express the exact result with a decimal. If the radius is considered exact, then only 49 pi is an acceptable solution.

If the radius is considered to be approximate to some degree, then it's perfectly valid to express the result in decimal form, to an appropriate number of significant figures.

153.86 is a fairly accurate approximation.

However it's not as accurate as it might seem, since you used only 3 significant figures in your approximation of pi (you used 3.14). The first three figures in your answer are therefore significant (though you need to round); the .86 in your answer is pretty much meaningless.

If you round the result to 154 then the figures in your answer are significant and meaningful.

Note that a more accurate approximation (though still just an approximation) to 49 pi is 153.93804. An approximation to 5 significant figures is 153.94, not 153.86.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

After reviewing the given solution, I learned that we must first solve for r by using C = 2 Pi r

Then, we can proceed to the equation A = Pi x r2 since we solved for the r value.

------------------------------------------------

Self-critique Rating: 2

*********************************************

Question: `q011. What is the radius of circle whose area is 78 square meters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

I am lost with this problem.

I don’t understand why there is so much dividing and squaring going on and why it is necessary.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aKnowing that A = pi r^2 we solve for r. We first divide both sides by pi to obtain A / pi = r^2. We then reverse the sides and take the square root of both sides, obtaining r = sqrt( A / pi ).

Note that strictly speaking the solution to r^2 = A / pi is r = +-sqrt( A / pi ), meaning + sqrt( A / pi) or - sqrt(A / pi). However knowing that r and A are both positive quantities, we can reject the negative solution.

Now we substitute A = 78 m^2 to obtain

r = sqrt( 78 m^2 / pi) = sqrt(78 / pi) m.{}

Approximating this quantity to 2 significant figures we obtain r = 5.0 m.

STUDENT QUESTION

Why after all the squaring and dividing is the final product just meters and not meters squared????

INSTRUCTOR RESPONSE

It's just the algebra of the units.

sqrt( 78 m^2 / pi) = sqrt(78) * sqrt(m^2) / sqrt(pi). The sqrt(78) / sqrt(pi) comes out about 5.

The sqrt(m^2) comes out m.

This is a good thing, since radius is measured in meters and not square meters.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

After reviewing the given solution, I understand the problem better.

I see that in order to obtain the r value, we must divide both sides of the equation by Pi, A = Pi x r2, and then square root both sides to end with r = sqrt (A / Pi)

Then, after this is done, we simply plug in 78 m2.

Giving us, r = square root of (78 m2 / Pi) = approximately 5 meters

------------------------------------------------

Self-critique Rating: 2

*********************************************

Question: `q012. Summary Question 1: How do we visualize the area of a rectangle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

We must visualize the area of a rectangle by breaking it down into a grid-like pattern of 1 unit squares. Then, we multiply the length value times the width value to get the area in units squared.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aWe visualize the rectangle being covered by rows of 1-unit squares. We multiply the number of squares in a row by the number of rows. So the area is A = L * W.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q013. Summary Question 2: How do we visualize the area of a right triangle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To visualize the area of a right triangle, we must first picture it as a rectangle. Two right triangles form one rectangle. We know that the base of the triangle is equal to the length of the rectangle and the height of the triangle is equal to the width of the rectangle. With that being said, we multiply the area by ˝ to get the area of the right triangle. A = ˝ b x h

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aWe visualize two identical right triangles being joined along their common hypotenuse to form a rectangle whose length is equal to the base of the triangle and whose width is equal to the altitude of the triangle. The area of the rectangle is b * h, so the area of each triangle is 1/2 * b * h.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q014. Summary Question 3: How do we calculate the area of a parallelogram?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To calculate the area of a parallelogram, we must multiply the base and the height.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aThe area of a parallelogram is equal to the product of its base and its altitude. The altitude is measured perpendicular to the base.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q015. Summary Question 4: How do we calculate the area of a trapezoid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To calculate the area of a trapezoid, we must multiple the width times the average of the two parallel altitudes.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aWe think of the trapezoid being oriented so that its two parallel sides are vertical, and we multiply the average altitude by the width.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q016. Summary Question 5: How do we calculate the area of a circle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To calculate the area of a circle, we must plug in the corresponding values into the formula

A = Pi x r2

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aWe use the formula A = pi r^2, where r is the radius of the circle.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

OK

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q017. Summary Question 6: How do we calculate the circumference of a circle? How can we easily avoid confusing this formula with that for the area of the circle?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To calculate the circumference of a circle, we must use the formula

C = 2 Pi r

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aWe use the formula C = 2 pi r. The formula for the area involves r^2, which will give us squared units of the radius. Circumference is not measured in squared units.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I should have mentioned that the formula for the Area uses r2 and that circumference is not measured in squared units.

------------------------------------------------

Self-critique Rating: 3

*********************************************

Question: `q018. Explain how you have organized your knowledge of the principles illustrated by the exercises in this assignment.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

By doing these exercises, it has refreshed my memory on basic formulas and will certainly speed up my work pace. I have organized them by shape and the corresponding area formula that goes with each particular shape. Also, a few of the exercises have taught me how to properly solve for the area. For example, I didn’t know that I needed to divide by Pi and then square root both sides. This is great knowledge to have for problems in the near future.

------------------------------------------------

Self-critique Rating: 3

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

@& Good answers and very good self-critiques.*@