Assignment 3

#$&*

course Mth 277

If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

temporary disclaimer: Solutions to these problems were erroneously deleted and the problem solutions have been quickly reconstructed. These solutions are therefore not guaranteed, though the process by which they are obtained should be correct. So if you have discrepancies in arithmetic and other details, feel free to question the given solutions.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

At the end of this document, after the qa problems (which provide you with questions and solutions), there is a series of Questions, Problems and Exercises.

query_09_3

*********************************************

Question: Find v dot w when v = 4i + j and w =3i + 2k.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V dot w= 12+2=14

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: v dot w = 4 * 3 + 1 * 2 = 12 + 2 = 14.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating:OK

*********************************************

Question: Determine whether v = 5i - 5j + 5k and w = 8i - 10j -2k are orthogonal.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V dot w= 40+50-10= 80, not orthogonal

If the vectors were orthogonal then v dot w would equal zero.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Two vectors are orthogonal if the angle between them is 90 deg, i.e., if and onlye if their dot product is zero.

The dot product of these vectors is 5 * 8 - 5 * (-8) + 5 * (-2) = 40 + 40 - 10 = 70.

They are not orthogonal.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating:OK

*********************************************

Question: Find the angle between v = 2i +3 k and w = -j + 4k.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Cos(theta)= (a dot b)/(magnitude of a by the magnitude of b).

Cos(theta)= (-2+12)/(sqrt(13)*sqrt(17))= 10/sqrt(221)= 0.6726

Theta= inverse cosine (0.67267)= 47.726 degrees or about 4pi/15

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Since v dot w = || v || || w || cos(theta) we have

theta = cos^-1 ( v dot w ) || v || || w || = cos^-1 ( 10 / (sqrt(13) * sqrt( 17) ) = cos^-1 (.67) = 48 degrees, approx., or roughly.8 radians.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating:OK

*********************************************

Question: Find two distinct unit vectors orthogonal to both v = i + 2j -2k and w = i + j - 2k.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

ai+bj+ck must be orthogonal to both vectors v and w, so a+2b-2c=0 and a+b-2c=0 must exist simultaneously. Therefore b=0 and a=2c and the vector 2ci+ck is orthogonal to v and w. This vector has magnitude of sqrt((2c)^2+c^2)= sqrt(5c^2)= (plus or minus) c*sqrt(5). And the unit vector that is orthogonal to vectors v and w is c^2*2*sqrt(5)i +c^2*sqrt(5)k, or -c^2*2*sqrt(5)i -c^2*sqrt(5)k.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Suppose a i + b j + c k is orthogonal to both. Then the dot product of this vector with each of the given vectors is zero, and we have

a + 2 b - 2 c = 0

a + b - 2 c = 0

Subtracting the second equation from the first we get b = 0.

With this value of b both our first and our second equation become

a - 2 c = 0

so that

a = 2 c.

Any vector of the form 2c i + c k is therefore orthogonal to our two vectors.

Any such vector has magnitude sqrt( (2 c)^2 + c^2) = sqrt( 5 c^2) = sqrt(5) | c |.

If c is positive then | c | = c and our vector is

(2 c i + c k ) / (sqrt(5) c) = 2 sqrt(5) / 5 i + sqrt(5) / 5 k.

If c is negative then | c | = - c and our vector will be

(2 c i + c k ) / (- sqrt(5) c) = - 2 sqrt(5) / 5 i - sqrt(5) / 5 k.

Our two solution vectors are equal and opposite. Each is a unit vector perpendicular to the two given vectors.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating:OK

*********************************************

Question: Let v = i - j + 4k and w = -i + 3j + 2k. Find cos(theta). Find s such that v is orthogonal to sv - w. Also find t such that v - tw is orthogonal to w

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Cos(theta)= (-1-3+8)/(sqrt(18)*sqrt(14))= 4/sqrt(252).

If v=i-j+4k and sv-w= si-sj+4sk+i-3j-2k. The dot product of v and sv-w= si^2+i^2+sj^2+3j^2+16sk^2-8k^2, which must equal zero for v and sv-w to be orthogonal. Since i^2+j^2+k^2=1, then the equation is s+1+s+3+16s-8=0, then 18s-4=0, then 18s=4, so s=4/18.

v-tw= i-j+4k+ti-3tj-2tk. The dot product of v-tw and w is -i(i+ti)+3j(-j-3tj)+2k(4k-2tk), which equals zero if orthogonal. So, i^2(-1-t)+j^2(-3-9t)+k^2(8-4t)=0. Then, -14t+4=0, so t=4/14.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

cos(theta) = v dot w / ( || v || || w ||) = 4 / (sqrt(18) sqrt(14) ) = 4 / (12 sqrt(7) ).

The condition v orthogonal to s v - w is

v dot (s v - w ) = 0

(i - j + 4 k ) dot ( (s - 1) i + (-s + 3) j + (4 s + 2) k ) = 0

which becomes

s - 1 + s - 3 + 16 s + 8 = 0

so that

18 s = 4

and

s = 4 / 18.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating:OK

*********************************************

Question: Find the work performed when a force F = (6/11)i - (2/11)j + (6/11)k is applied to an object moving along the line from P(3,5,-4) to Q(-4,-9,-11).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

W=F*D

D=PQ= <-7, -14, -7>

W= (6/11 *-7) + (-2/11 * -14) + (6/11 * -7) = 28/11

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: The work is F dot `ds = ( (6/11)i - (2 / 11) j + (6 / 11) k ) dot (-7 i - 14 j - 7 k ) = -42/11 + 28 / 11 - 42 /11 = 28 / 11.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating:OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#This looks very good. Let me know if you have any questions. &#

Assignment 3

#$&*

course Mth 277

If your solution to stated problem does not match the given solution, you should self-critique per instructions athttp://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm

.

temporary disclaimer: Solutions to these problems were erroneously deleted and the problem solutions have been quickly reconstructed. These solutions are therefore not guaranteed, though the process by which they are obtained should be correct. So if you have discrepancies in arithmetic and other details, feel free to question the given solutions.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

At the end of this document, after the qa problems (which provide you with questions and solutions), there is a series of Questions, Problems and Exercises.

query_09_3

*********************************************

Question: Find v dot w when v = 4i + j and w =3i + 2k.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V dot w= 12+2=14

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: v dot w = 4 * 3 + 1 * 2 = 12 + 2 = 14.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating:OK

*********************************************

Question: Determine whether v = 5i - 5j + 5k and w = 8i - 10j -2k are orthogonal.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

V dot w= 40+50-10= 80, not orthogonal

If the vectors were orthogonal then v dot w would equal zero.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

Two vectors are orthogonal if the angle between them is 90 deg, i.e., if and onlye if their dot product is zero.

The dot product of these vectors is 5 * 8 - 5 * (-8) + 5 * (-2) = 40 + 40 - 10 = 70.

They are not orthogonal.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):OK

------------------------------------------------

Self-critique rating:OK