course Phy 121 5/13 10:35am Introductory Question-Answer (qa) Sequence
.............................................
Given Solution: &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `q006. Your solution: 3 * 5 - 4 * 3 ^ 2 = 15 – 4*9 = 15 – 36 = -21 3 * 5 - (4 * 3)^2 = 15 – (12)^2 = 15 – 144 = 129 confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `q007. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = 2 x + 3 = 2(-2) + 3 = -4 + 3 = -1 (-2,-1), (-1,1), (0,3), (1,5), (2,7) My graph goes through the points listed earlier in the solution, and it makes a line. confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `q008. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: y = x^2 + 3 = (-2)^2 + 3 = 4 + 3 = 7 (-2,7), (-1,4), (0,3), (1,4) (2,7) The graph shows an upward facing U-shape (symmetrical about the y-axis), so we can determine that the graph is quadratic. This makes sense, since we have an exponent for our x variable. confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `q009 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: When x = 1, y = 2^x + 3 = 2^1 + 3 = 2 + 3 =5 (follow order of operations) (1, 5), (2, 7), (3, 11), (4, 19) The value for y is increasing larger and larger for each increase in x on the graph, so we have an exponential graph #### When x = 1, we obtain y = 2^1 + 3 = 2 + 3 = 5. “ x = 2 we obtain y = 2^2 + 3 = 4 + 3 = 7. “ x = 3 we obtain y = 2^3 + 3 = 8 + 3 = 11. “ x = 4 we obtain y = 2^4 + 3 = 16 + 3 = 19. (1, 5), (2, 7), (3, 11), (4, 19) confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `q010. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: It is equal to the original number because any number divided by one remains the same. EX: 25/1 = 25 and 8.95/1 = 8.95 confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `q011. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The result is always less than the original number. EX: 30/5 = 6 and 30/6 = 5 and 100/2 = 50 confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `q012. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: The result will be greater than the original. EX: 5/0.5 = 10 confidence rating #$&* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique rating #$&* OK ********************************************* Question: `q013. your answer: vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv When x = 1, y = 2^x + 3 = 2^1 + 3 = 2 + 3 =5 (follow order of operations) (1, 5), (2, 7), (3, 11), (4, 19) The value for y is increasing larger and larger for each increase in x on the graph, so we have an exponential graph #### When x = 1, we obtain y = 2^1 + 3 = 2 + 3 = 5. “ x = 2 we obtain y = 2^2 + 3 = 4 + 3 = 7. “ x = 3 we obtain y = 2^3 + 3 = 8 + 3 = 11. “ x = 4 we obtain y = 2^4 + 3 = 16 + 3 = 19. (1, 5), (2, 7), (3, 11), (4, 19) "