#$&* course phy 122 I see this is where our lab questions are posed, i should have known this, i apologize for any inconvenience this may have caused.
.............................................
Given Solution: Bernoulli's Equation can be written • 1/2 rho v1^2 + rho g y1 + P1 = 1/2 rho v2^2 + rho g y2 + P2 If altitude is constant then y1 = y2, so that rho g y1 is the same as rho g y2. Subtracting this quantity from both sides, these terms disappear, leaving us • 1/2 rho v1^2 + P1 = 1/2 rho v2^2 + P2. The difference in pressure is P2 - P1. If we subtract P1 from both sides, as well as 1/2 rho v2^2, we get • 1/2 rho v1^2 - 1/2 rho v2^2 = P2 - P1. Thus • change in pressure = P2 - P1 = 1/2 rho ( v1^2 - v2^2 ). Caution: (v1^2 - v2^2) is not the same as (v1 - v2)^2. Convince yourself of that by just picking two unequal and nonzero numbers for v1 and v2, and evaluating both sides. ALTERNATIVE FORMULATION Assuming constant rho, Bernoulli's Equation can be written 1/2 rho `d(v^2) + rho g `dy + `dP = 0. If altitude is constant, then `dy = 0 so that 1/2 rho `d(v^2) + `dP = 0 so that `dP = - 1/2 rho `d(v^2). Caution: `d(v^2) means change in v^2, not the square of the change in v. So `d(v^2) = v2^2 - v1^2, not (v2 - v1)^2. STUDENT SOLUTION: The equation for this situation is Bernoulli's Equation, which as you note is a modified KE+PE equation. Considering ideal conditions with no losses (rho*gy)+(0.5*rho*v^2)+(P) = 0 g= acceleration due to gravity y=altitude rho=density of fluid v=velocity P= pressure Constant altitude causes the first term to go to 0 and disappear. (0.5*rho*v^2)+(P) = constant So here is where we are: Since the altitude h is constant, the two quantities .5 rho v^2 and P are the only things that can change. The sum 1/2 `rho v^2 + P must remain constant. Since fluid velocity v changes, it therefore follows that P must change by a quantity equal and opposite to the change in 1/2 `rho v^2. MORE FORMAL SOLUTION: More formally we could write • 1/2 `rho v1^2 + P1 = 1/2 `rho v2^2 + P2 and rearrange to see that the change in pressure, P2 - P1, must be equal to the change 1/2 `rho v2^2 - 1/2 `rho v1^2 in .5 rho v^2: • P2 - P1 = 1/2 `rho v2^2 - 1/2 `rho v1^2 = 1/2 rho (v2^2 - v1^2). ** Your Self-Critique: ok Your Self-Critique Rating: ********************************************* Question: query billiard experiment Do you think that on the average there is a significant difference between the total KE in the x direction and that in the y direction? Support your answer. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: I believe that on the average it is random which is more than the other, particles are likely to move from a state of order to disorder, so to say that they move closer to having more KE energy would imply that they are of a certain type of order, which is by nature not true. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** In almost every case the average of 30 KE readings in the x and in the y direction differs between the two directions by less than 10% of either KE. This difference is not statistically significant, so we conclude that the total KE is statistically the same in bot directions. ** Your Self-Critique: Your Self-Critique Rating: ********************************************* Question: What do you think are the average velocities of the 'red' and the 'blue' particles and what do you think it is about the 'blue' particle that makes is so? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: The average of the red particles velocity was about 4 or 5, it has a 1/10 of the mass of the blue particle and thus moves much faster. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** Student answer with good analogy: I did not actually measure the velocities. the red were much faster. I would assume that the blue particle has much more mass a high velocity impact from the other particles made very little change in the blue particles velocity. Similar to a bycycle running into a Mack Truck. INSTRUCTOR NOTE: : It turns out that average kinetic energies of red and blue particles are equal, but the greater mass of the blue particle implies that it needs less v to get the same KE (which is .5 mv^2) ** Your Self-Critique: Ah so the kinetic energies are the same but because one has a larger mass, the kinetic energy results in less movement per unit of mass.
.............................................
Given Solution: ** If you watch the velocity display you will see that the red particles seem to average somewhere around 4 or 5 ** Your Self-Critique: ok Your Self-Critique Rating: ok ********************************************* Question: If the simulation had 100 particles, how long do you think you would have to watch the simulation before a screen with all the particles on the left-hand side of the screen would occur? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: An incredibly long time, there were only 30 particles on the screen in my observation and it was very rare to see a space larger than 1 square inch become empty of particles. More particles would make for a much less chance of such an occurrence, especially with larger squares. With that many particles they would have to become tightly compressed into a space but they are constantly repelling off one another so this is again unlikely. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** STUDENT ANSWER: Considering the random motion at various angles of impact.It would likely be a very rare event. INSTRUCTOR COMMENT This question requires a little fundamental probability but isn't too difficult to understand: If particle position is regarded as random the probability of a particle being on one given side of the screen is 1/2. The probability of 2 particles both being on a given side is 1/2 * 1/2. For 3 particles the probability is 1/2 * 1/2 * 1/2 = 1/8. For 100 particlles the probability is 1 / 2^100, meaning that you would expect to see this phenomenon once in 2^100 screens. If you saw 10 screens per second this would take about 4 * 10^21 years, or just about a trillion times the age of the Earth. In practical terms, then, you just wouldn't expect to see it, ever. ** Your Self-Critique: ok Your Self-Critique Rating: ********************************************* Question: What do you think the graphs at the right of the screen might represent? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: Vertical and horizontal energy levels, im still unsure about the blue one with the yellow box. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** One graph is a histogram showing the relative occurrences of different velocities. Highest and lowest velocities are least likely, midrange tending toward the low end most likely. Another shows the same thing but for energies rather than velocities. ** Your Self-Critique: Okay so one of the histograms is for differing velocities and the other is for energies. Your Self-Critique Rating: ********************************************* Question: prin phy and gen phy problem 10.36 15 cm radius duct replentishes air in 9.2 m x 5.0 m x 4.5 m room every 16 minutes; how fast is air flowing in the duct? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: The volume of the room is the l *w *h = 210m^3 The air replenishes at a rate of 210m^3 / 960s or 0.22m^3/s The area of the duct is `pi (0.15m)^2 = or 0.07m^2 We find the speed of the flow by dividing the rate of volume flow by the cross sectional area: 0.22m^3/s / 0.007m^2 = 3.1m/s confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The volume of the room is 9.2 m * 5.0 m * 4.5 m = 210 m^3. This air is replentished every 16 minutes, or at a rate of 210 m^3 / (16 min * 60 sec/min) = 210 m^3 / (960 sec) = .22 m^3 / second. The cross-sectional area of the duct is pi r^2 = pi * (.15 m)^2 = .071 m^2. The speed of the air flow and the velocity of the air flow are related by rate of volume flow = cross-sectional area * speed of flow, so speed of flow = rate of volume flow / cross-sectional area = .22 m^3 / s / (.071 m^2) = 3.1 m/s, approx. Your Self-Critique: ok ` Your Self-Critique Rating: ok ********************************************* Question: prin phy and gen phy problem 10.40 What gauge pressure is necessary to maintain a firehose stream at an altitude of 15 m?
.......................................
YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: the change in pressure is `dP = -rho g h The density of water and speed of gravity remain constant, the altitude doesn’t change, we’re not given any other quantities so all we’re concerned with is the following: P = 1000kg/m^3 * 9.8m/s^2 * 15m = 147000kg*m/s^2 Since `dP is negative the answer is: -147,000 N. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** We use Bernoulli's equation. Between the water in the hose before it narrows to the nozzle and the 15m altitude there is a vertical change in position of 15 m. Between the water in the hose before it narrows to the nozzle and the 15 m altitude there is a vertical change in position of 15 m. Assuming the water doesn't move all that fast before the nozzle narrows the flow, and noting that the water at the top of the stream has finally stopped moving for an instant before falling back down, we see that we know the two vertical positions and the velocities (both zero, or very nearly so) at the two points. All that is left is to calculate the pressure difference. The pressure of the water after its exit is simply atmospheric pressure, so it is fairly straightforward to calculate the pressure inside the hose using Bernoulli's equation. Assuming negligible velocity inside the hose we have change in rho g h from inside the hose to 15 m height: `d(rho g h) = 1000 kg/m^3 * 9.8 m/s^2 * 15 m = 147,000 N / m^2, approx. Noting that the velocity term .5 `rho v^2 is zero at both points, the change in pressure is `dP = - `d(rho g h) = -147,000 N/m^2. Since the pressure at the 15 m height is atmospheric, the pressure inside the hose must be 147,000 N/m^2 higher than atmospheric. ** Your Self-Critique: Your Self-Critique Rating: ********************************************* Question: Gen phy: Assuming that the water in the hose is moving much more slowly than the exiting water, so that the water in the hose is essentially moving at 0 velocity, what quantity is constant between the inside of the hose and the top of the stream? what term therefore cancels out of Bernoulli's equation? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** Velocity is 0 at top and bottom; pressure at top is atmospheric, and if pressure in the hose was the same the water wouldn't experience any net force and would therefore remain in the hose ** Your Self-Critique: Your Self-Critique Rating: ********************************************* Question: query gen phy problem 10.43 net force on 240m^2 roof from 35 m/s wind. What is the net force on the roof? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** air with density around 1.29 kg/m^3 moves with one velocity above the roof and essentially of 0 velocity below the roof. Thus there is a difference between the two sides of Bernoulli's equation in the quantity 1/2 `rho v^2. At the density of air `rho g h isn't going to amount to anything significant between the inside and outside of the roof. So the difference in pressure is equal and opposite to the change in 1/2 `rho v^2. On one side v = 0, on the other v = 35 m/s, so the difference in .5 rho v^2 from inside to out is `d(.5 rho v^2) = 0.5(1.29kg/m^3)*(35m/s)^2 - 0 = 790 N/m^2. The difference in the altitude term is, as mentioned above, negligible so the difference in pressure from inside to out is `dP = - `d(.5 rho v^2) = -790 N/m^2. The associated force is 790 N/m^2 * 240 m^2 = 190,000 N, approx. ** Your Self-Critique: Your Self-Critique Rating: ********************************************* Question: gen phy which term 'cancels out' of Bernoulli's equation and why? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** because of the small density of air and the small change in y, `rho g y exhibits practically no change. ** Your Self-Critique: Your Self-Critique Rating: ********************************************* Question: univ phy problem 12.77 / 14.75 (11th edition 14.67): prove that if weight in water if f w then density of gold is 1 / (1-f). Meaning as f -> 0, 1, infinity. Weight of gold in water if 12.9 N in air. What if nearly all lead and 12.9 N in air? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** The tension in the rope supporting the crown in water is T = f w. Tension and buoyant force are equal and opposite to the force of gravity so T + dw * vol = w or f * dg * vol + dw * vol = dg * vol. Dividing through by vol we have f * dg + dw = dg, which we solve for dg to obtain dg = dw / (1 - f). Relative density is density as a proportion of density of water, so relative density is 1 / (1-f). For gold relative density is 19.3 so we have 1 / (1-f) = 19.3, which we solve for f to obtain f = 18.3 / 19.3. The weight of the 12.9 N gold crown in water will thus be T = f w = 18.3 / 19.3 * 12.9 N = 12.2 N. STUDENT SOLUTION: After drawing a free body diagram we can see that these equations are true: Sum of Fy =m*ay , T+B-w=0, T=fw, B=(density of water)(Volume of crown)(gravity). Then fw+(density of water)(Volume of crown)(gravity)-w=0. (1-f)w=(density of water)(Volume of crown)(gravity). Use w==(density of crown)(Volume of crown)(gravity). (1-f)(density of crown)(Volume of crown)(gravity) =(density of water)(Volume of crown)(gravity). Thus, (density of crown)/(density of water)=1/(1-f). ** Your Self-Critique: Your Self-Critique Rating: ********************************************* Question: univ phy What are the meanings of the limits as f approaches 0 and 1? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** GOOD STUDENT ANSWER: f-> 0 gives (density of crown)/(density of water) = 1 and T=0. If the density of the crown equals the density of the water, the crown just floats, fully submerged, and the tension should be zero. When f-> 1, density of crown >> density of water and T=w. If density of crown >> density of water then B is negligible relative to the weight w of the crown and T should equal w. ** " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: univ phy What are the meanings of the limits as f approaches 0 and 1? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ** GOOD STUDENT ANSWER: f-> 0 gives (density of crown)/(density of water) = 1 and T=0. If the density of the crown equals the density of the water, the crown just floats, fully submerged, and the tension should be zero. When f-> 1, density of crown >> density of water and T=w. If density of crown >> density of water then B is negligible relative to the weight w of the crown and T should equal w. ** " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!