course Phy201 f֟ɰx}Student Name:
.................................................
NѥĶ^涖h Student Name: assignment #004
.................................................
......!!!!!!!!...................................
07:13:41 query Note that there are 10 questions in this assignment. At a certain instant the speedometer of a car reads 5 meters / second (of course cars in this country generally read speeds in miles per hour and km per hour, not meters / sec; but they could easily have their faces re-painted to read in meters/second, and we assume that this speedometer has been similarly altered). Exactly 4 seconds later the speedometer reads 25 meters/second (that, incidentally, indicates very good acceleration, as you will understand later). At what average rate is the speed of the car changing with respect to clock time?
......!!!!!!!!...................................
RESPONSE --> the aAve= the change in velocity / change in time 25m/sec-5m/sec/4sec=20m/sec*1/4sec=5m/sec^2
.................................................
......!!!!!!!!...................................
07:15:06 The rate of change of the speed with respect clock time is equal to the change in the speed divided by the change in the clock time. So we must ask, what is the change in the speed, what is the change in the clock time and what therefore is the rate at which the speed is changing with respect to clock time? The change in speed from 5 meters/second to 25 meters/second is 20 meters/second. This occurs in a time interval lasting 4 seconds. The average rate of change of the speed is therefore (20 meters/second)/(4 seconds) = 5 meters / second / second. This means that on the average, per second, the speed changes by 5 meters/second.
......!!!!!!!!...................................
RESPONSE --> yes i did not see the end answer
.................................................
......!!!!!!!!...................................
07:19:38 `q002. Explain in commonsense terms of the significance for an automobile of the rate at which its velocity changes. Do you think that a car with a more powerful engine would be capable of a greater rate of velocity change?
......!!!!!!!!...................................
RESPONSE --> yes if both are put at max power the one with the larger engine will have larger change in velocity in the same time
.................................................
......!!!!!!!!...................................
07:20:00 A car whose velocity changes more rapidly will attain a given speed in a shorter time, and will be able to 'pull away from' a car which is capable of only a lesser rate of change in velocity. A more powerful engine, all other factors (e.g., weight and gearing) being equal, would be capable of a greater change in velocity in a given time interval.
......!!!!!!!!...................................
RESPONSE --> yes
.................................................
......!!!!!!!!...................................
07:24:21 `q003. Explain how we obtain the units meters / second / second in our calculation of the rate of change of the car's speed.
......!!!!!!!!...................................
RESPONSE --> when we have a velocity of m/sec and we want to know the acceleratrion per sec then we/sec and this gives us the chsnge in velocity /sec and this is acceleration
.................................................
......!!!!!!!!...................................
07:24:46 `q004. The unit (meters / second) / second is actually a complex fraction, having a numerator which is itself a fraction. Such a fraction can be simplified by multiplying the numerator by the reciprocal of the denominator. We thus get (meters / second) * (1/ second). What do we get when we multiply these two fractions?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
07:26:52 Multiplying the numerators we get meters * 1; multiplying the denominators we get second * second, which is second^2. Our result is therefore meters * 1 / second^2, or just meters / second^2. If appropriate you may at this point comment on your understanding of the units of the rate of change of velocity.
......!!!!!!!!...................................
RESPONSE --> this takes the change in velocity / one sec and this gives us acceleration
.................................................
......!!!!!!!!...................................
07:31:02 `q004. If the velocity of an object changes from 10 m/s to -5 m/s during a time interval of 5 seconds, then at what average rate is the velocity changing?
......!!!!!!!!...................................
RESPONSE --> the object started slowing down -5m/sec-10m/sec/5sec= -15m/sec/5sec=-3m/sec^2 the object is slowing down -3m/sec^2
.................................................
......!!!!!!!!...................................
07:31:54 We see that the velocity changes from 10 meters/second to -5 meters/second, a change of -15 meters / second, during a five-second time interval. A change of -15 m/s during a 5 s time interval implies an average rate of -15 m/s / (5 s) = -3 (m/s)/ s = -3 m/s^2. This is the same as (-3 m/s) / s, as we saw above. So the velocity is changing by -3 m/s every second.
......!!!!!!!!...................................
RESPONSE --> yes the velocity I need to answer the question
.................................................
......!!!!!!!!...................................
07:34:45 `q005. You should have noted that velocity can be positive or negative, as can the change in velocity or the rate at which velocity changes. The average rate at which a quantity changes with respect to time over a given time interval is equal to the change in the quantity divided by the duration of the time interval. In this case we are calculating the average rate at which the velocity changes. If v represents velocity then we we use `dv to represent the change in velocity and `dt to represent the duration of the time interval. What expression do we therefore use to express the average rate at which the velocity changes?
......!!!!!!!!...................................
RESPONSE --> 'ds/'dt=vAve
.................................................
......!!!!!!!!...................................
07:37:31 The average rate would be expressed by [ave rate of velocity change with respect to clock time] = `dv / `dt. The expression [ave rate of velocity change with respect to clock time] is pretty cumbersome so we give it a name. The name we give it is 'average acceleration', abbreviated by the letter aAve. Using a to represent acceleration, write down the definition of average acceleration. The definition of average acceleration is aAve = `dv / `dt. Please make any comments you feel appropriate about your understanding of the process so far.
......!!!!!!!!...................................
RESPONSE --> yes when you explained it i get it. I did not realize you were asking for acceleration
.................................................
......!!!!!!!!...................................
07:41:42 `q006. If a runner is moving at 6 meters / sec at clock time t = 1.5 sec after starting a race, and at 9 meters / sec at clock time t = 3.5 sec after starting, then what is the average acceleration of the runner between these two clock times?
......!!!!!!!!...................................
RESPONSE --> 'dv/'dt=aAve 9m/sec-6m/sec/3.5sec-1.5sec= 3m/sec/2sec=1.5m/sec/sec
.................................................
......!!!!!!!!...................................
06:24:48 click for the next question
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
06:25:11 `q006b. What therefore is the average rate at which the velocity is changing during this time interval?
......!!!!!!!!...................................
RESPONSE -->
.................................................
......!!!!!!!!...................................
06:26:34 We see that the runner's velocity changes from 6 meters/second to 9 meters/second, a change of `dv = 9 m/s - 6 m/s = 3 m/s, during a time interval their runs from t = 1.5 sec to t = 3.5 sec so that the duration of the interval is `dt = 3.5 s - 1.5 s = 2.0 s. The rate at which the velocity changes is therefore 3 m/s / (2.0 s) = 1.5 m/s^2. Please comment if you wish on your understanding of the problem at this point.
......!!!!!!!!...................................
RESPONSE --> something happened to the program Idid not see the problem
.................................................
......!!!!!!!!...................................
06:30:59 `q007. On a graph of velocity vs. clock time, we can represent the two events of this problem by two points on the graph. The first point will be (1.5 sec, 6 meters/second) and the second point will be (3.5 sec, 9 meters / sec). What is the run between these points and what does it represent? What is the rise between these points what does it represent? What is the slope between these points what does it represent?
......!!!!!!!!...................................
RESPONSE --> the rise represents the change in distance the slope is the rise / run 3 m/sec/2 sec=1.5
.................................................
......!!!!!!!!...................................
06:32:20 The rise from the first point to the second is from 6 meters/second to 9 meters/second, or 3 m/s. This represents the change `dv in velocity. The run is from 1.5 seconds to 3.5 seconds, or 2 seconds, and represents the change `dt in clock time. The slope, being the rise divided by the run, is 3 m/s / (2 sec) = 1.5 m/s^2. This slope represents `dv / `dt, which is the average acceleration during the time interval. You may if you wish comment on your understanding to this point.
......!!!!!!!!...................................
RESPONSE --> i see now that the slope is the accelleration
.................................................
......!!!!!!!!...................................
06:35:48 `q008. In what sense does the slope of any graph of velocity vs. clock time represent the acceleration of the object? For example, why does a greater slope imply greater acceleration?
......!!!!!!!!...................................
RESPONSE --> this is because the change in distance is greater during the same change in time
.................................................
......!!!!!!!!...................................
06:36:58 Since the rise between two points on a graph of velocity vs. clock time represents the change in `dv velocity, and since the run represents the change `dt clock time, the slope represents rise / run, or change in velocity /change in clock time, or `dv / `dt. This is the definition of average acceleration.
......!!!!!!!!...................................
RESPONSE --> yes
.................................................
......!!!!!!!!...................................
06:45:02 `q009. This is the same situation as in the preceding problem: An automobile coasts down a hill with a constant slope. At first its velocity increases at a very nearly constant rate. After it attains a certain velocity, air resistance becomes significant and the rate at which velocity changes decreases, though the velocity continues to increase. Describe a graph of velocity vs. clock time for this automobile (e.g., neither increasing nor decreasing; increasing at an increasing rate, a constant rate, a decreasing rate; decreasing at an increasing, constant or decreasing rate; the description could be different for different parts of the graph).
......!!!!!!!!...................................
RESPONSE --> when the velocity is increasing at a constant rate the graph will be a straight line at constant slope and will be increasing at a increasing rate. when the increase in velocity slow down the graph will curve to the new constant rate and the graph will be increasing at a decreasing rate and then when constant it will go back to a increasing at a increasing rate
.................................................
......!!!!!!!!...................................
06:46:09 Your graph should have velocity as the vertical axis and clock time as the horizontal axis. The graph should be increasing since the velocity starts at zero and increases. At first the graph should be increasing at a constant rate, because the velocity is increasing at a constant rate. The graph should continue increasing by after a time it should begin increasing at a decreasing rate, since the rate at which the velocity changes begins decreasing due to air resistance. However the graph should never decrease, although as air resistance gets greater and greater the graph might come closer and closer to leveling off. Critique your solution by describing or insights you had or insights you had and by explaining how you now know how to avoid those errors.
......!!!!!!!!...................................
RESPONSE --> yes
.................................................
......!!!!!!!!...................................
06:50:48 `q010. An automobile coasts down a hill with a constant slope. At first its velocity increases at a very nearly constant rate. After it attains a certain velocity, air resistance becomes significant and the rate at which velocity changes decreases, though the velocity continues to increase. Describe a graph of acceleration vs. clock time for this automobile (e.g., neither increasing nor decreasing; increasing at an increasing rate, a constant rate, a decreasing rate; decreasing at an increasing, constant or decreasing rate; the description could be different for different parts of the graph).
......!!!!!!!!...................................
RESPONSE --> I think that since acceleration is a product of velocity then the graph should react the same be increasing at an increasing rate and then when the car accelaeation changes it will be increasing at a decreasing rate and then when constant again it will be increasing at an increasing rate
.................................................
......!!!!!!!!...................................
06:53:44 Your graph should have acceleration as the vertical axis and clock time as the horizontal axis. At first the graph should be neither increasing nor decreasing, since it first the acceleration is constant. Then after a time the graph should begin decreasing, which indicates the decreasing rate at which velocity changes as air resistance begins having an effect. An accurate description of whether the graph decreases at a constant, increasing or decreasing rate is not required at this point, because the reasoning is somewhat complex and requires knowledge you are not expected to possess at this point. However it is noted that the graph will at first decrease more and more rapidly, and then less and less rapidly as it approaches the t axis. In answer to the following question posed at this point by a student: Can you clarify some more the differences in acceleration and velocity? ** Velocity is the rate at which position changes and the standard units are cm/sec or m/sec. Acceleration is the rate at which velocity changes and its standard units are cm/s^2 or m/s^2. Velocity is the slope of a position vs. clock time graph. Acceleration is the slope of a velocity vs. clock time graph. **
......!!!!!!!!...................................
RESPONSE --> yes
.................................................
"