Assignment Query 46

#$&*

course MTH272

If your solution to a stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution: If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

004. `query 4

*********************************************

Question: `q4.6.1 (previously 4.6.06 (was 4.5.06)) y = C e^(kt) thru (3,.5) and (4,5)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = C e^(kt) thru (3,.5) and (4,5)

.5= C e^(3k)

5= C e^(4k)

5/.5= (C e^(4k))/ C e^(3k)

10=e^k ln both sides to eliminate e

Ln10=k=2.303 rounded

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Substituting the coordinates of the first and second points into the form y = C e^(k t) we obtain the equations

.5 = C e^(3*k)and

5 = Ce^(4k) .

Dividing the second equation by the first we get

5 / .5 = C e^(4k) / [ C e^(3k) ] or

10 = e^k so

k = 2.3, approx. (i.e., k = ln(10) )

Thus .5 = C e^(2.3 * 3)

.5 = C e^(6.9)

C = .5 / e^(6.9) = .0005, approx.

The model is thus close to y =.0005 e^(2.3 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

************************************************************

*********************************************

Question: `q 4.6.2 (previously 4.6.10 (was 4.5.10)) solve dy/dt = 5.2 y if y=18 when t=0

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y’=Cy

y’ = 5.2 y if y=18 when t=0

y’ = 5.2y separate variables by dividing by y

y’/y = 5.2

y’/y dt = 5.2 dt integrate with respect to t

1/y = 5.2 dt dy = y’dt

ln(y) = 5.2t + C find antiderivative for each side

(e) ln(y) = (e)5.2t + C solve for y

y = Ce^(5.2*0)

18= Ce^(5.2*0)

Y=18

18 = C e^(k0)

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The details of the process:

dy/dt = 5.2y. Divide both sides by y to get

dy/y = 5.2 dt. This is the same as

(1/y)dy = 5.2dt. Integrate the left side with respect to y and the right with respect to t:

ln | y | = 5.2t +C. Therefore

e^(ln y) = e^(5.2 t + c) so

y = e^(5.2 t + c). This is the general function which satisfies dy/d

t = 5.2 y.

Now e^(a+b) = e^a * e^b so

y = e^c e^(5.2 t). e^c can be any positive number so we say e^c = A, A > 0.

y = A e^(5.2 t). This is the general function which satisfies dy/dt = 5.2 y.

When t=0, y = 18 so

18 = A e^0. e^0 is 1 so

A = 18. The function is therefore

y = 18 e^(5.2 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I took the information from a text I had from calculus 1. The way our text explains it was a bit confusing.

------------------------------------------------

Self-critique Rating:3

@& Any source you prefer to use for any topic is fine.*@

***************************************************************

*********************************************

Question: `q4.6.5 (previously 4.6.25 (was 4.5.25)) If an initial investment of $1000 is continuously compounded at 12% how long does it take the investment to double? What is the amount after 10 and 25 years?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

A=Pe^rt

2*1000=A=2000

(1000e^.12t)/1000=2000/1000 lay equation for continuously compounding interest

e^.12t=2

ln e^.12t= ln2 take a natural log

.12t= ln2

.12t/.12=ln2/.12

T=5.78 years compounding continually

After 10 years

1000e^(.12*10)=$3320.12

After 25 years

1000e^(.12*25)=$20,085.54

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a

Rate = .12 and initial amount is $1000 so we have

amt = $1000 e^(.12 t).

The equation for the doubling time is

1000 e^(.105 t) = 2 * 1000.

Dividing both sides by 1000 we get

e^(.12 t) = 2. Taking the natural log of both sides

.12t = ln(2) so that

t = ln(2) / .12 = 5.8 yrs approx.

after 10 years we have

• amt = 1000e^(.12(10)) = $3 320

after 25 yrs we have

• amt = 1000 e^(.12(25)) = $20 087

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

There was a slight difference in the 25 year example, but I believe it was due to rounding through the process.

------------------------------------------------

Self-critique Rating:3

*************************************************************

*********************************************

Question: `q 4.6.8 (previously 4.6.44 (was 4.5.42)) demand fn p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

p = C e^(kx) if when p=$5, x = 300 and when p=$4, x = 400

5 = C e^(300k)

4 = C e^(400k)

5/4 = (e^(300k))/ (e^(400k)) divide the first problem by the second problem

5/4 = e^(-100k)

ln5/4 = -100k take a natural log

(ln5/4)/-100 = k isolate k

k = -.0022

5 = C e^(300*-.0022) plug in k to solve C

5/ (e^(300*-.0022)) = C Isolate C

C = 9.67

P = 9.67 e^(-.0022x) missing variables to solve the two demand function

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a You get 5 = C e^(300 k) and 4 = C e^(400 k).

If you divide the first equation by the second you get

5/4 = e^(300 k) / e^(400 k) so

5/4 = e^(-100 k) and

k = ln(5/4) / (-100) = -.0022 approx..

Then you can substitute into the first equation:

}

5 = C e^(300 k) so

C = 5 / e^(300 k) = 5 / [ e^(300 ln(5/4) / -100 ) ] = 5 / [ e^(-3 ln(5/4) ] .

This is easily evaluated on your calculator. You get C = 9.8, approx.

So the function is p = 9.8 e^(-.0022 t). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):N/A

------------------------------------------------

Self-critique Rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good work. Let me know if you have questions. &#