Assignment 7

#$&*

course MTH272

There was one I just couldn’t see working out could you give more details please.

007. `query 7If you had trouble with the concept and/or procedures for substitution, consider submitting all or part of the document

qa_ac2_14.htm,

which is intended as an introduction to integration by substitution.

*********************************************

Question: `q5.2.36 (was 5.2.2( (previously 5.2.36 (was 5.2.34) ) integral of x^2 (1-x^3)^2 by formal substitution.

What is the integral of the given function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

g(x)=x^2 (1-x^3)^2d/dx

u=x^3-1 using U substitution

du=-3x^2 d/dx

dx=du/-3x^2

u=u^2/3du

du=-u’^3/9

g(x)=-(1-x^3)^3/9 + c add in the constant

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a If we let u = 1 - x^3 then u ' = - 3 x^2 and the x^2 in our integrand is - u ' / 3.

(1-x^3)^2 is u^2, so the integrand is - u ' / 3 * u^2 = -1/3 u^3 u ' .

So the integral is you have -1/3 u^2 du. The integral of u^2 u ' is 1/3 u^3.

Thus the integral of -1/3 u^2 u ' is -1/3 of 1/3 u^3, or -1/9 u^3.

So your integral should be -1/9 u^3 = -1/9 (1-x^3)^3.

The general antiderivative is -1/9 ( 1 - x^3)^3 + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

*************************************************************************

*********************************************

Question: `qWhat is the derivative of your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

g(x)=(1-x^3)^3/9

(-1/9*-3x^2)(3(1-x^3) ^2)

(-1/9*-9x^2)(1-x^3)^2

g(x’)=x^2(1-x^3)^2

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The derivative of -1/9 (1-x^3)^3, using the Chain Rule, is the product of -1/9, 3(1-x^3)^2, and the derivative -3x^2 of the 'inner function' (1-x^3). Multiplying these factors we get -1/9 (-3x^2) * 3(1-x^3)^2 = x^2 (1-x^3)^2. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): mine looks a little different but I believe it is the same

------------------------------------------------

Self-critique Rating:3

*********************************************************************

*********************************************

Question: `q 5.2.54 (was 5.2.4) (previously 5.2.54 (was 5.2.52)) find x | dx/dp = -400/(.02p-1)^3, x=10000 when p=100

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-400/(.02p-1)^3

-400(.02p-1)^-3 rearrange the equation

u=.02p-1

10000=

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The equation rearranges to dx = -400 * dp * (.02 p - 1)^-3.

An antiderivative of the left-hand side could be just x.

An antiderivative of dp * (.02 p - 1)^-3 is found using u = .02 p - 1, so du = .02 dp and dp = du / .02 = 50 du. Thus the right-hand side becomes -400 * 50 u^-3 du = -20000 u^-3 du, with antiderivative 20000 / 2 * u^-2 + c = 10,000 u^-2 + c.

So we have x = 10,000 * u^-2 + c = 10,000 * (.02 p - 1)^-2 + c.

Note that dx / dp is therefore 10,000 * -2 * .02 (p-1)^-3 = -400 (.02 p - 1)^-3, consistent with the original equation.

Since x = 10,000 * (.02 p - 1)^-2 + c and x = 10,000 when p = 100 we have

10,000 = 10,000 * (.02 * 100 - 1)^2 + c

10,000 = 10,000 / 1^2 + c

10,000 = 10,000 + c so

c = 0.

The solution is therefore

x = 10,000 * (.02 p - 1)^-2 + 0 or just

x = 10,000 * (.02 p - 1)^-2.

**

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I have to be honest that even after looking through your notes this does not make any sense what so ever. Could you explain with any more details than this please?

------------------------------------------------

Self-critique Rating:

@& At this point you need to integrate with respect to p.

u = .02 p - 1 is a good start.

du would then be .02 dp, so dp = 50 du.

Your integral int(-400 / (.02 p - 1)^3 dp) becomes

int(-400 / u^3 * 50 du).

I believe you'll understand that, since you were on that basic track.

I expect you'll be able to then follow the rest of the solution.*@

***********************************************************************************

*********************************************

Question: `q 5.3.4 (was 5.3.1) (previously 5.3.04 (was 5.3.04)) integral of e^(-.25 x) by Exponential Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

e^(-.25 x)

u=-.25x

du/dx=-.25 I don’t know if this the way to look at it but what needs to be multiplied by -.25 to = 1

-1/4*-4/1= 1

-4e^-.25x +c= du /dx rearranging placing -4 multiplied by the function adding the constant in gives you the antiderivative.

-4e^-.25x +c

Verifying by taking the derivative of the answer

-4*-.25=1 exponent multiplied by the variable

1e^-.25x or e^-.25x

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Simple substitution u = -.25 x gives us du/dx = -.25 so that du = -.25 dx and dx = du / (-.25) = -4 du.

Our original integrand e^(-.25 x) dx therefore becomes e^u * (-4 du) = -4 e^u du. Our general antiderivative will be -4 e^u + c, meaning -4 e^(-.25 x) + c.

The derivative of -4 e^(-.25 x) + c is -4 ( -.25 e^-.25 x) = e^-.25 x, verifying our result.

The General Exponential Rule is equivalent to this:

u = -.25 x so du/dx = -.25. Thus the integral is of e^u / (du/dx) = e^(-.25 x) / (-1/4) = -4 e^(-.25 x). *&*&

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

*******************************************************************************

*********************************************

Question: `q 5.3.10 (was 5.3.2) (previously 5.3.10 (was 5.3.10)) integral of 3(x-4)e^(x^2-8x) by Exponential Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

3(x-4)e^(x^2-8x)

u=2-8x

du=x-4

Multiplying (1/2)(2-8x)=1-4x taking the antiderivative of this leaves you with 2-8x

3e^(x^2-8x)/2 placing u over 2 multiplying it 3 gives you the antiderivative

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a if u=x^2 - 8x then du / dx = 2x - 8

x-4 = 1/2(2x-8) so 3(x-4) = 3/2 du/dx.

Thus 3(x-4)e^(x^2-8x) is 3/2 e^u du/dx.

The general antiderivative of e^u du/dx is e^u + c, so the integral of 3/2 e^u du/dx is 3/2 e^u.

Substituting x^2 - 8x for u we have 3/2 e^(x^2-8x) + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

********************************************************************

*********************************************

Question: `qproblem 5.3.16 (was 5.3.3) (previously 5.3.16) integral of 1/(6x-5) by Log Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

u= (6x-5)

du=6

1/u dx=(1/du) ln(1/u) dx

1/(6x-5)dx=(1/6)ln1/(6x-5)dx multiplying and dividing by du

(1/6)ln1/(6x-5)+c add in the constant

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a du/dx is the derivative of 6x-5, so du/dx = 6

If we let u = 6x - 5 then du = 6 dx so dx = 1/6 du and the integral becomes that of ln(u) * du/6 = 1/6 ln(u) du

The integral of 1/6 ln(u) du is 1/6 * 1 / u + c

Substituting u = 6x - 5 we get the final result

int(1 / (6x - 5) = 1/6 * 1 / (6x-5) = 1 / [ 6(6x-5) ]. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): although it doesn’t look like yours it does works out to the derivative and it is from the information covered in the book

------------------------------------------------

Self-critique Rating:

@& Your solution is correct and does check out.

My solution looks deranged. Not sure what happened there but disregard it.*@

****************************************************************************

*********************************************

Question: `q 5.3.22 (was 5.3.5) (previously problem 5.3.22 (was 5.3.20)) integral of x/(x^2+4) by Log Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x/(x^2+4)

u= x^2 + 4

du=2x

2x(u)

½ ln (x^2 + 4) with the integral of u being ½ of the function

½ ln (x^2 + 4)+c or (ln (x^2 + 4))/2 +c

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a If we let u = x^2 + 4 we get du/dx = 2x so that the x in the numerator is 1/2 du/dx.

The integral of x / (x^2 + 4) is the integral of 1/2 * ( 2x / (x^2+4) ) = 1/2 (1/u du/dx).

The general antiderivative is therefore 1/2 ln(u) + c = 1/2 ln |x^2+4| + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

*********************************************************************************

*********************************************

Question: `qWhat is the derivative of your result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

½ ln (x^2 + 4)

½*2x*1 / (x^2 + 4)=

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The derivative of ln(x^2+4) * (1/2) is 1/2 * 2x * 1 / (x^2 + 4) or x / (x^2 + 4). This confirms that ln(x^2+4) * (1/2) is a solution to the equation.

The general antiderivative is of course ln(x^2+4) * (1/2) + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*******************************************************************************

*********************************************

Question: `q 5.3.28 (was 5.3.7) (previously 5.3.28 (was 5.3.24) (was 5.3.24) ) integral of e^x/(1+e^x) by Log Rule

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

e^x/(1+e^x)

1/x dx = ln|x| + c

1/1+e^x*e^x = ln|1+e^ + c using the simple log rule

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a let u = 1 + e^x. Then du/dx = e^x.

We are therefore integrating 1 / (1 + e^x) * e^x, which is 1/u du/dx.

The antiderivative is ln |u| + c = ln | 1 + e^x | + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I worked like the book instructed but I seem to get the proper antiderivative without using the absolute value. Could you explain?

------------------------------------------------

Self-critique Rating:

@& The absolute value should be included.

However since e^x is never negative, 1 + e^x is never negative, so | 1 + e^x | = 1 + e^x for all x, and ln | 1 + e^x | = ln( 1 + e^x ).*@

****************************************************************************

*********************************************

Question: `q 5.3.9 (previously 5.3.46 (was 5.3.34) (was 5.3.34) ) integral of (6x + e^x) `sqrt( 3x^2 + e^x)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(6x + e^x) `sqrt( 3x^2 + e^x)

u=e^x + 3x^2

du=6x+e^x which has a antiderivative of (6x^2)/2+e^x = 3x^2+e^x=u

e^x + 3x^2^(1/2)

(2)e^x + 3x^2

2(e^x + 3x^2)^(3/2)/3=2/3(e^x + 3x^2)^(3/2)+c

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a Here are two detailed solutions:

(6x + e^x) `sqrt( 3x^2 + e^x) = `sqrt(u) * du/dx = u^(1/2) du/dx.

The antiderivative is thus

2/3 u^(3/2) = 2/3 (3x^2 + e^x)^(3/2).

Alternatively

If u = 3x^2 + e^x then du = 6x + e^x and we have the integral of `sqrt(u) du, which is just

2/3 u^(3/2) + c = 2/3 (3x^2 + e^x)^(3/2) + c. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

***************************************************************

*********************************************

Question: `q 5.3.58 (previously 5.3.11) (previously 5.3.58 (was 5.3.54) (was 5.3.52) ) dP/dt = -125 e^(-t/20), t=0, P=2500 and interpretation.

Give your complete solution.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-125 e^(-t/20), t=0, P=2500 and interpretation

{(t) = 0} 2500e^0/20 + c = 2500 c=0 using t = 0 c=0

{(t) = 15} 2500e^-15/20 + c = 1180.92 c=1180.92 using t = -15 c=1180.92

P=2500/2= 1250

2500e^t/20+c=0

.99/2500 = e^t/20 divide both sides by 2500

ln.99/2500= lne^t/20 multiply both sides by the ln

(20/1)-7.83 = (20/1)t/20 multiply both sides by 20

-156.68=t

2500e^-156.68/20=.99

156.68 days until all fish are assumed dead for the exception of the .99 fish

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a If dP/dt = -125 e^(-t/20) then dp = -125 e^(-t/20) dt. Integrating both sides we get

p = 2500 e^(-t/20) + c ( to integrate the right-hand side start with u = -t / 20, etc.

If p = 2500 when t = 0 we have

2500 = 2500 e^(-0/20) + c so

2500 = 2500 + c and c = 0.

The final solution is thus

p = 2500 e^(-t/20)

After 15 days the population is p(15) = 2500 e^(-15/20) = 1000, give or take a couple hundred (you can evaluate the expression).

All the trout are considered dead when the population is below 1/2. So you need to solve 1/2 = 2500 e^(-t/20) for t.

Dividing both sides of this equation by 2500 then taking the natural log of both sides you get

-t/20 = ln( 1/2500 ) so

t = -20 * ln (1/2500) = -11 or -12 or so.

Thus t is about 200 days, give or take a little.

Alternative reasoning of the particular solution:

If u = -t/20 then e^u du/dt = e^(-t/20) * -1/20. -125 e^(-t/20) is 2500 * ( -1/20 e^(-t/20) ) = 2500 e^u du/dx.

The integral is 2500 e^u + c = 2500 e^(-t/20) + c.

If t = 0, P=2500 then 2500 = 2500 e^0 + c = 2500 + c, so c = 0. Thus the particular solution is

P = 2500 e^(-t/20).

Alternative solution for the time when all trout are dead:

2500 e^(-t/20) < .5 means

e^(-t/20) < .0002 so -t/20 < ln(.0002) so

-t < ln(.0002) * 20 so

-t < -170.34 and

t > 170.34.

The probability is that all trout are dead by day 171.

STUDENT QUESTION: I couldn't figure out the time for all the trout to die because the ln 0 is undefined

** When the population falls below 1/2 of a fish it rounds off to 0 and you assume that all the trout are dead.

You can think of this in terms of probability. The function doesn't really tell us the precise number but the probable number. When the probability is againt that last fish being alive we figure that it's most likely dead. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): I calculated .99 because I figured anything less than one was good.

------------------------------------------------

Self-critique Rating:

&#Good responses. See my notes and let me know if you have questions. &#