Assignment 13

#$&*

course MTH272

Sorry there are going to be some back to back post.

If your solution to a stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution: If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

013. `query 13

*******************************************************************

*********************************************

Question: `q5.7.4 (was 5.7.4 vol of solid of rev abt x axis, y = `sqrt(4-x^2)

What is the volume of the solid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

sqrt(4-x^2)

using pi(r)^2 where the function is = r

pi{sqrt(4-x^2)^2}

(4-x^2) the sqrt and ^2 cancel each other out

4-x^2=0 4=x^2 sqrt4=sqrtx^2 2=x solve for the function by setting to 0

Int of (4-x^2) = 4x- [(x^3)/3] integrate the function

pi4x- [(x^3)/3]

pi4(2)- [(2^3)/3]

pi8-(8/3)=pi(24/3)-(8/3)=pi(16/3)=16.76 approximately

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a*& If the curve is revolved about the x axis the radius of the circle at position x will be the y value radius = `sqrt(4 - x^2).

The cross-section at that position will therefore be pi * radius^2 = pi ( sqrt(4 - x^2) ) ^ 2 = pi ( 4 - x^2).

The volume of a 'slice' of thickeness `dx will therefore be approximately pi ( 4 - x^2 ) * `dx, which leads us to the integral int(pi ( 4 - x^2) dx, x from 0 to 2).

An antiderivative of 4 - x^2 = 4 x - x^3 / 3. Between x = 0 and x = 2 the value of this antiderivative changes by 4 * 2 - 2^3 / 3 = 16 / 3, which is the integral of 4 - x^2 from x = 0 to x = 2. Multiplying by pi to get the desired volume integral we obtain

volume = pi ( 16/3) = 16 pi / 3. *&*& DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

***********************************************************

*********************************************

Question: `q5.7.16 (was 5.7.16) vol of solid of rev abt x axis region bounded by y = x^2, y = x - x^2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

bounded by y = x^2, y = x - x^2

we have 2 separate cylinders with y = x - x^2 being the outer part of the cylinder and y = x^2 being an inner cyinder with the volume being the portion between the two.

x - x^2=0 x=x^2 combined 2x^2-x=x(2x-1) set to 0 to find x

x(2x-1)

2x-1=0

2x=1

x=1/2

x=0 x=1/2 set to 0 to find x

pi [(x - x^2)^2]-(x^2) integrate

pi{(2x^5)-(5x^4)}/10

pi{(2(1/2)^5)-(5(1/2)^4)}/10

pi(.0625-.3125)/10

pi-.25/10= -.7854/10= -.0785

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a y = x^2 and y = x - x^2 intersect where x^2 = x - x^2, i.e., where 2x^2 - x = 0 or x(2x-1) = 0.

This occurs when x = 0 and when x = 1/2.

So the region runs from x=0 to x = 1/2.

Over this region y = x^2 is less than y = x - x^2. When the region is revolved about the x ais we will get an outer circle of radius x - x^2 and an inner circle of radius x^2. The area between the inner and outer circle is `pi (x-x^2)^2 - `pi(x^2)^2 or `pi ( (x-x^2)^2 - x^2). We integrate this expression from x = 0 to x = 1/2.

The result is -`pi/40. ** DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): generally it is exactly the same answer I probably worked it out a little far

------------------------------------------------

Self-critique Rating:

***************************************************

*********************************************

Question: `q5.7.18 (was 5.7.18) vol of solid of rev abt y axis y = `sqrt(16-x^2), y = 0, 0

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

In this case the we are measuring the volume around the y axis

y = `sqrt(16-x^2), y = 0, 0

sqrt(16-x^2)^2=y^2

16-x^2=y^2

4(4-x)=y^2 x=4 when y=0

16-y^2=x^2

sqrt16-y^2=x x= to the function

pi(sqrt(16-y^2))^2=pi(x) ^2

pi(16-y^2)=pi(x^2)

pi(16y-(y^3)/3=x Integrate

pi(16(4)-(4)^3)/3=x

pi(64-21.33)

pi(42.67)=134.04

.............................................

Given Solution: 2

`a At x = 0 we have y = 4, and at x = 4 we have y = 0. So the y limits on the integral run from 0 to 4.

At a given y value we have

y = sqrt(16 - x^2) so that

y^2 = 16 - x^2 and

x = sqrt(16 - y^2).

At a given y the solid will extend from x = 0 to x = sqrt(16 - y^2), so the radius of the solid will be sqrt(16 - y^2).

So we integrate pi x^2 = pi ( sqrt(16 - y^2) ) ^2 = pi ( 16 - y^2) from y = 0 to y = 4.

An antiderivative of pi ( 16 - y^2) with respect to y is pi ( 16 y - y^3 / 3).

We get

int( pi ( 16 - y^2), y, 0, 4) = pi ( 16 * 4 - 4^3 / 3) - pi ( 16 * 0 - 0^3 / 3) = 128 pi / 3.

This is the volume of the solid of revolution. ** DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

*********************************************************************

*********************************************

Question: `q5.7.31 (was 5.7.30) fuel take solid of rev abt x axis y = 1/8 x^2 `sqrt(2-x)

What is the volume of the solid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

1/8 x^2 `sqrt(2-x)

Using pi*r^2 to calculate the area

pi(1/64) [(x^2 `sqrt(2-x)]^2

pi(1/64) (x^4)(2-x)

y=0 yields 2 answers (0, 2)

2x^4-x^5

[(2x^5)/5-x^6/6] find antiderivative

pi(1/64) [(2(2)^5)/5-(2^6)/6]- [(2*0^5)/5-(0^6)/6] plugging in the 2 points where y=0 (0,2) into the antiderivative to come up with the volume of the solid.

pi(1/64) [2*(32/5)]-(64/6)- 0= pi(1/64) [2*(192/30)]-(320/30)= pi(1/64) [384/30)]-(320/30)= (pi/64)(64/30)=pi/30=.105

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a The radius of the solid at position x is 1/8 x^2 sqrt(2-x) so the cross-sectional area at that point is

c.s. area = pi * (1/8 x^2 sqrt(2-x) )^2 = pi/64 * x^4(2-x) = pi/64 * ( 2 x^4 - x^5).

The volume is therefore

vol = int(pi/64 * ( 2 x^4 - x^5), x, 0, 2).

An antiderivative of 2 x^4 - x^5 is 2 x^5 / 5 - x^6 / 6 so the integral is

pi/64 * [ 2 * 2^5 / 5 - 2^6 / 6 - ( 2 * 0^5 / 5 - 0^6 / 6) ] = pi / 64 * ( 64 / 30) = pi/30. ** DER

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good responses. Let me know if you have questions. &#