Assignment 18

#$&*

course MTH272

If your solution to a stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution: If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

018.

************************************************************************

*********************************************

Question: `qQuery problem 6.2.54 (7th edition 6.3.54) time for disease to spread to x individuals is 5010 integral(1/[ (x+1)(500-x) ]; x = 1 at t = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

T=5010 integral (1/[ (x+1)(500-x) ]dx

1/(x+1) + 1/(500-x) = 1 with x at point 0 x=-1 x=500

A/(x+1) + B/(500-x) = 1

B(-1+1) + A(500-(-1)) = 1 solving for A

A(501) = 1

A=1/501

B(500+1) + A(500-500) = 1 solving for B

B(501) + A(0) = 1

B(501) = 1

B=1/501

5010 integral [(1/(501(x+1))+(1/(501(500-x))] multiply both integrated parts by 501

10[(1/(x+1))+(1/(500-x)) + c]=t simplify by dividing the entire function by 501

(10)[ln(x+1))-ln(500-x))] + c]=t give the antiderivative of the function

[(10)ln(x+1))/(500-x))] + c]=t simplify using logarithmic rules

[(10)ln(1+1))/(500-1))] + c]=0 using 1 individual as 0 point

[(10)ln(1+1))/(500-1))] + c]=0

[(10)ln(2/499 + c]=0

-55.1945 + c=0

c=55.19 hours

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a 1 / ( (x+1)(500-x) ) = A / (x+1) + B / (500-x) so

A(500-x) + B(x+1) = 1 so

A = 1 / 501 and B = 1/501.

The integrand becomes 5010 [ 1 / (501 (x+1) ) + 1 / (501 (500 - x)) ] = 10 [ 1/(x+1) + 1 / (500 - x) ].

Thus we have

t = INT(5010 ( 1 / (x+1) + 1 / (500 - x) ) , x).

Since an antiderivative of 1/(x+1) is ln | x + 1 | and an antiderivative of 1 / (500 - x) is - ln | 500 - x | we obtain

t = 10 [ ln (x+1) - ln (500-x) + c].

(for example INT (1 / (500 - x) dx) is found by first substituting u = 1 - x, giving du = -dx. The integral then becomes INT(-1/u du), giving us - ln | u | = - ln | 500 - x | ).

We are given that x = 1 yields t = 0. Substituting x = 1 into the expression t = 10 [ ln (x+1) - ln (500-x) + c], and setting the result equal to 0, we get c = 5.52, appxox.

So t = 10 [ ln (x+1) - ln (500-x) + 5.52] = 10 ln( (x+1) / (500 - x) ) + 55.2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

************************************************************

*********************************************

Question: `qHow long does it take for 75 percent of the population to become infected?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

75% of the 500 individuals susceptible to the disease = 375

[(10)ln(375+1))/(500-375))] + 55.2]=75% of population

[(10)ln(375+1))/(500-375))] + 55.2]=66.2 Hours

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

75% of the population of 500 is 375. Setting x = 375 we get

t = 10 ln( (375+1) / (500 - 375) ) + 55.2 = 66.2.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

*********************************************

Question: `qWhat integral did you evaluate to obtain your result?

The integral where 1 individual was equal to zero time

[(10)ln((x+1)/(500-x))] + c]=t

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

******************************************************

*********************************************

Question: `qHow many people are infected after 100 hours?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

[(10)ln((x+1)/(500-x))] + 55.2]=100

[(10)ln((x+1)/(500-x))]=44.8 subtract 55.2 from both sides

ln((x+1)/(500-x))=4.48 divide both sides by 10

e^(ln((x+1)/(500-x)))=e^4.48 taking each side to the power of e

(x+1)/(500-x)=88.2347

x+1=44117.35-88.2347x multiply each side by (500-x) and rearrange

x+89.2347x=44117.35 divide by 89.2347

x=494.4 or 494 individuals will be infected in 100 hours since you can’t have .4 people

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a t = 10 ln( (x+1) / (500 - x) ) + 55.2. To find x we solve this equation for x:

10 ln( (x+1) / (500 - x) ) = t - 55.2 so

ln( (x+1) / (500 - x) ) = (t - 55.2 ) / 10. Exponentiating both sides we have

(x+1) / (500 - x) = e^( (t-55.2) / 10 ). Multiplying both sides by 500 - x we have

x + 1 = e^( (t-55.2) / 10 ) ( 500 - x) so

x + 1 = 500 e^( (t-55.2) / 10 ) - x e^( (t-55.2) / 10 ). Rearranging we have

x + x e^( (t-55.2) / 10 ) = 500 e^( (t-55.2) / 10 ) - 1. Factoring the left-hand side

x ( 1 + e^( (t-55.2) / 10 ) ) = 500 e^( (t-55.2) / 10 ) - 1 so that

x = (500 e^( (t-55.2) / 10 ) - 1) / ( 1 + e^( (t-55.2) / 10 ) ).

Plugging t = 100 into this expression we actually get x = 494.4, approx.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):NA

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qQuery Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks very good. Let me know if you have any questions. &#