Section 11

#$&*

course Mth 158

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution:

If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it.This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

010. `* 10

*********************************************

Question: * 1.1.20 (was 1.1.12). Explain, step by step, how you solved the equation 5y + 6 = -18 - y

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this problem we need to get the variable y on one side of the equation and the other values on one side to solve for y. to start, we need to subtract 6 from both sides of the equation giving us 5y=-24-y. then we add a y term to both sides of the equation which gives us 6y=-24. Now to give us the correct answer it is desired that the y term is at its lowest form or equal to one. So we divide both sides by 6 giving us y=-4.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION WITH INSTRUCTOR COMMENT: 5y + 6 = 18 - y

Subtract 6 from both sides, giving us

5y = 12 - y

Add y to both sides,

5y + y = 12 or 6y = 12

divide both sides by 6

y = 2

INSTRUCTOR COMMENT: This is correct for equation 5y + 6 = 18 - y but the equation in the above note is 5y + 6 = -18 - y.

The solution to this equation is found by practically the same steps but you end up with y = -4.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question:

1.1.38 \ 44 (was 1.1.30). Explain, step by step, how you solved the equation (2x+1) / 3 + 16 = 3x

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

First it is easier to eliminate fractions by multiplying everything by the denominator. So when we multiply by 3 the problem becomes 2x+1+48=9x which then becomes 2x+49=9x. now we want the x variables on one side so we can solve for x so we subtract 2x from both sides giving 49=7x then to solve for x we divide both sides of the equation by 7 giving 7=x or x=7.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION:

(2x + 1) / 3 + 16 = 3x

First, multiply both sides of the equation by 3

2x +1 + 48 =9x or

2x + 49 = 9x

subtract 2x from both sides to get

49 = 7x

Divide both sides by 7 to get

x = 7.

STUDENT QUESTION

I was wondering at the end since it ended up 49 = 7x and you divide by 7 and say x = 7…would you have to

make it a -7 if you move it to the opposite side of the equation?

INSTRUCTOR RESPONSE

It's not a matter of 'moving things around', but a matter of adding or subtracting the same quantity on both sides, or multiplying or dividing both sides by the same quantity.

In this case both sides are divided by 7, which doesn't involve any negative signs.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question:

* was 1.1.44 \ 36. Explain, step by step, how you solved the equation (x+2)(x-3) = (x+3)^2

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Here again we want to solve for x but we have to use distributive property and then add and subtract like terms then balance the equation. First we multiply the terms (x+2)(x-3) and then the term (x+3)^2. After this we have (x^2-x-6)=(x^2+6x+9). Now our goal is to get x by itself by eliminating factors on both sides of the equation. We subtract x^2 from both sides, then we subtract 9 from both sides and then add 1x to both sides, leaving us with -15=7x. now to present x alone we divide by 7 leaving us with -15/7=x or x=-15/7.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * STUDENT SOLUTION: (x+2)(x+3) = (x+3)^2

First, we use the distributive property to remove the parenthesis and get

x^2 - x - 6 = x^2 + 6x + 9

subtract x^2 from both sides,

-x - 6 = 6x + 9

Subtract 9 from both sides

- x - 6 - 9 = 6x or -x - 15 = 6x

add x to both sides

-15 = 7x

Divide both sides by 7

x = -15/7

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question:

* 1.1.52 (was 1.1.48). Explain, step by step, how you solved the equation x / (x^2-9) + 4 / (x+3) = 3 / (x^2-9).

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this equation we need to find the LCD so we will factor (x^2-9) out and find that the LCD is (x-3)(x+3) we then multiply all terms by the lcd to eliminate the fractions making this equation x+4(x-3)=3. Once we have this form we then begin to isolate the x variable. We distribute the 4 amoungst the term (x-3) and the equation becomes x+4x-12=3 now combine like terms so 5x-12=3. Now we add 12 to both sides leaving us with 5x=15 and then divide by 5 to isolate the x variable and the result is x=3.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

x / (x^2 -9) + 4 / (x+3) = 3 / (x^2 -9),

first factor x^2 - 9 to get

x / ( (x-3)(x+3) ) + 4 / (x+3) = 3 / ( (x-3)(x+3) ).

Multiply both sides by the common denominator ( (x-3)(x+3) ):

( (x-3)(x+3) ) * x / ( (x-3)(x+3) ) + ( (x-3)(x+3) ) * 4 / (x+3) = ( (x-3)(x+3) ) * 3 / ( (x-3)(x+3) ).

Simplify:

x + 4(x-3) = 3.

Apply the Distributive Law, rearrange and solve:

x + 4x - 12 = 3

5x = 15

x = 3.

If there is a solution to the original equation it is x = 3.

• However x = 3 results in denominator 0 when substituted into the original equation, and division by 0 is undefined. So there is no solution to the equation.

STUDENT COMMENT

x / (x^2-9) + 4 / (x+3) = 3 / (x^2-9) Since you have like terms (x^2 - 9) on both sides, they cancel each other out

INSTRUCTOR RESPONSE

If something 'cancels' by multiplication or division, it has to 'cancel' from all terms. (x^2 - 9) is not a multiplicative or divisive factor of the term 4 / (x + 3) so that factor does not 'cancel'.

You can multiply or divide both sides by the same quantity, or add and subtract the same quantity from both sides.

Anything called 'cancellation' that doesn't result from these operations is invalid.

Because 'cancellation' errors are so common among students at this level, my solutions never mention anything called 'cancellation'.

If you multiply both sides of the equation

x / (x^2-9) + 4 / (x+3) = 3 / (x^2-9)

by (x^2 - 9), you get

( x / (x^2-9) + 4 / (x+3) ) * (x^2 - 9) = 3 / (x^2-9) * (x^2 - 9) so that

x / (x^2-9) * (x^2 - 9) + 4 / (x+3) * (x^2 - 9) = 3 / (x^2-9) * (x^2 - 9). The (x^2 - 9) does then 'cancel' from two of the three terms, but not from the third. You get

x + 4 / (x+3) * (x^2 - 9) = 3.

You're still stuck with an x^2 - 9 factor on one of the terms, and a denominator x - 3.

However this equation does represent progress. If you factor x^2 - 9 into (x-3)(x+3), things quickly simplify.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

The result I came up with matches the given solution however I did not check to make sure it did not present a zero in the original equation. I suppose cross checking against the original equation would be a beneficial addition from now on.

------------------------------------------------

Self-critique Rating:2

*********************************************

Question:

* 1.1.58 (was 1.1.54). Explain, step by step, how you solved the equation (8w + 5) / (10w - 7) = (4w - 3) / (5w + 7)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this problem we first find and multiply all terms ny the LCM to eliminate fractions. The LCM is (10w-7)(5w+7), and once we multiply this by all the terms, the equations will look like (8w+5)(5w+7)=(4w-3)(10w-7). Now we distribute these factors out leaving us with 40w^2+25w+56w+35=40w^2-30w-28w+21. Now we combine like terms leaving us with 40w^2+81w+35=40w^2-58w+21. Now we balance the equation in an attempt to isolate x. so we subtract 40w^2 from both sides and then we subtract 81w from both sides leaving us with 35=-193w+21. At this stage we subtract 21 from both sides leaving 14=-139w. now to isolate the w variable we divide by -139 leaving us with -14/139=w or w= -14/139

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * GOOD STUDENT SOLUTION:

1) clear the equation of fractions by multiplying both sides by the LCM (10w - 7)(5W + 7)

After cancellation the left side reads:

(5w+7)(8w + 5)

After cancellation the right side reads:

(10w - 7)(4w - 3)

multiply the factors on each side using the DISTRIBUTIVE LAW

Left side becomes: (40w^2) + 81w + 35

Right side becomes: (40w^2) - 58w + 21

3) subtract 40w^2 from both sides

add 58w to both sides

subtract 35 from both sides

Rewrite: 139w = - 14

Now divide both sides by 139 to get

w = - (14 / 139)

STUDENT QUESTION:

(5w+7)(8w+5) = (10w-7)(4w-3)

work what you can

40w^2 + 35 = 40w^2 +21

take away 40w^2 from both sides

didnt understand this one..;

INSTRUCTOR RESPONSE:

It doesn't look like you used the distributive law to multiply those binomials.

(5w+7)(8w+5) = 5w ( 8w + 5) + 7 ( 8w + 5)= 40 w^2 + 25 w + 56 w + 35 = 40 w^2 + 81 w + 35.

(10w-7)(4w-3) = 10 w ( 4 w - 3) - 7 ( 4 w - 3) = 40 w^2 - 30 w - 28 w + 21 = 40 w^2 - 58 w + 21.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question: * 1.1.70 (was 1.1.78). Explain, step by step, how you solved the equation 1 - a x = b, a <> 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Assuming that we are trying to solve for x, the first thing that needs to be done is to subtract 1 from both sides leaving us with -ax=b-1, then we divide by -a which leaves us with x=(b-1)/-a. now the last step to eliminate a negative variable in the denominator is to multiply by -1/-1 giving us x=(-b+1)/a.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Start with

1 -ax = b, a <> 0.

Adding -1 to both sides we get

1 - ax - 1 = b - 1,

which we simplify to get

-ax = b - 1.

Divide both sides by -a, which gives you

x = (b - 1) / (-a). Multiply the right-hand side by -1 / -1 to get

x = (-b + 1) / a or

x = (1 - b) / a. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question:

* extra problem (was 1.1.72). Explain, step by step, how you solved the equation x^3 + 6 x^2 - 7 x = 0 using factoring.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this first we must factor out an x to give us a trinomial whose highest exponent is 2. Looking like x(x^2+6x-7)=0. Now we factor the trinomial itself into two binomials looking like x(x-1)(x+7)=0. Now we have 3 terms that can be set equal to zero so the first is x=0 plain and simple. The next is x-1=0 so we add 1 to both sides making it x=1. The next is x+7=0 in which we subtract 7 from both sides and get x=-7.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * Starting with

x^3 + 6 x^2 - 7 x = 0 factor x out of the left-hand side:

x(x^2 + 6x - 7) = 0. Factor the trinomial:

x ( x+7) ( x - 1) = 0. Then

x = 0 or x + 7 = 0 or x - 1 = 0 so

x = 0 or x = -7 or x = 1. **

STUDENT QUESTION

I don’t understand this part of the equation x = 0 or x + 7 = 0 or x - 1 = 0 so

x = 0 or x = -7 or x = 1 ??? where do you get all of this from???

INSTRUCTOR RESPONSE

x ( x+7) ( x - 1) = 0

says that three different quantities, multiplied together, give you zero.

Now if three quantities multiplied together give you zero, what is the one thing you know for sure?

You know for sure that one of them is zero, because if you multiply three quantities that aren't zero you don't get zero (more specifically if you multiply three numbers, none of which are zero, you don't get zero).

The three quantities are x, x + 7 and x - 1. The only way you can get zero by multiplying these quantities is if one of them is zero.

So if

x ( x+7) ( x - 1) = 0

you know that x = 0, or x + 7 = 0, or x - 1 = 0.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question:

* 1.1.90 (was 1.2.18). The final exam counts as two tests. You have scores of 86, 80, 84, 90. What score do you need on the final in order to end up with a B average, which requires an average score of 80, and an A average, which requires a score of 90?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To achieve an average of a B one would have to make a 70 on the final exam and to an achieve an average of an A one would have to make a 100 on the final exam.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * This can be solved by trial and error but the only acceptable method for this course, in which we are learning to solve problems by means of equations, is by an equation.

Let x be the score you make on the exam.

The average of the four tests is easy to find:

• 4-test average = ( 86 + 80 + 84 + 90 ) / 4 = 340 / 4 = 85.

The final grade can be thought of as being made up of 3 parts, 1 part being the test average and 2 parts being the exam grade. We would therefore have

• final average = (1 * test average + 2 * exam grade) / 3.

This gives us the equation

• final ave = (85 + 2 * x) / 3.

If the ave score is to be 80 then we solve

(85 + 2 * x) / 3 = 80.

Multiplying both sides by 3 we get

85 + 2x = 240.

Subtracting 85 from both sides we have

2 x = 240 - 85 = 155

so that

x = 155 / 2 = 77.5.

We can solve

(340 + x) / 5 = 90

in a similar manner. We obtain x = 92.5.

Alternative solution:

If we add 1/3 of the test average to 2/3 of the final exam grade we get the final average. So (using the fact that the test ave is 85%, as calculated above) our equation would be

1/3 * 85 + 2/3 * x = final ave.

For final ave = 80 we get

1/3 * 85 + 2/3 * x = 80.

Multiplying both sides by 3 we have

85 + 2 * x = 240.

The rest of the solution goes as before and we end up with

x = 77.5.

Solving 1/3 * 85 + 2/3 * x = 90 we get x = 92.5, as before. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

After seeing the given solution I’m convinced that using a formula to solve this would have been both more accurate and quick.

------------------------------------------------

Self-critique Rating:2

*********************************************

Question:

* 1.1.82 (was 1.1.90). Explain, step by step, how you solved the equation v = -g t + v0 for t.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this problem we want to isolate t because that’s what we are solving for. We do this by first subtracting v0 from both sides giving v-v0=-gt then we divide both sides by -g giving v-v0/g=t giving t=-(v-v0)/g then we distribute a -1 and it becomes t=(-v+v0)/g.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * NOTE: v0 stands for v with subscript 0; the whole expression v0 stands for the name of a variable. It doesn't mean v * 0.

Starting with v = -g t + v0, add -v0 to both sides to get

v - v0 = -gt.

Divide both sides by -g to get

(v - v0) / (-g) = t

so that

t = -(v - v0) / g = (-v + v0) / g.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

*********************************************

Question:

* 1.1.82 (was 1.1.90). Explain, step by step, how you solved the equation v = -g t + v0 for t.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this problem we want to isolate t because that’s what we are solving for. We do this by first subtracting v0 from both sides giving v-v0=-gt then we divide both sides by -g giving v-v0/g=t giving t=-(v-v0)/g then we distribute a -1 and it becomes t=(-v+v0)/g.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * NOTE: v0 stands for v with subscript 0; the whole expression v0 stands for the name of a variable. It doesn't mean v * 0.

Starting with v = -g t + v0, add -v0 to both sides to get

v - v0 = -gt.

Divide both sides by -g to get

(v - v0) / (-g) = t

so that

t = -(v - v0) / g = (-v + v0) / g.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

#*&!

*********************************************

Question:

* 1.1.82 (was 1.1.90). Explain, step by step, how you solved the equation v = -g t + v0 for t.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

To solve this problem we want to isolate t because that’s what we are solving for. We do this by first subtracting v0 from both sides giving v-v0=-gt then we divide both sides by -g giving v-v0/g=t giving t=-(v-v0)/g then we distribute a -1 and it becomes t=(-v+v0)/g.

confidence rating #$&*:ok

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

* * NOTE: v0 stands for v with subscript 0; the whole expression v0 stands for the name of a variable. It doesn't mean v * 0.

Starting with v = -g t + v0, add -v0 to both sides to get

v - v0 = -gt.

Divide both sides by -g to get

(v - v0) / (-g) = t

so that

t = -(v - v0) / g = (-v + v0) / g.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):ok

------------------------------------------------

Self-critique Rating:ok

#*&!#*&!

&#Very good work. Let me know if you have questions. &#