#$&* course Mth 158 If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: * * The cube root of 54 is expressed as 54^(1/3). The number 54 factors into 2 * 3 * 3 * 3, i.e., 2 * 3^3. Thus 54^(1/3) = (2 * 3^3) ^(1/3) = 2^(1/3) * (3^3)^(1/3) = 2^(1/3) * 3^(3 * 1/3) = 2^(1/3) * 3^1 = 3 * 2^(1/3), i.e., 3 * cube root of 2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * R.8.18. Simplify the cube root of (3 x y^2 / (81 x^4 y^2) ). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: For this problem the cube root would be expressed as (3xy^2)/(81x^4y^2)^1/3. First we need to simplify by eliminating factors so y^2-y^2 is 0 and x^4-x is x^3 and 81/3 is 27. Now the problem becomes (1/27^3)^1/3 now we distribute 1/3 which will give us 1/(3^3)^1/3*(x^3)^1/3 and now we have 1/3x. confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: The cube root of (3 x y^2 / (81 x^4 y^2) ) is (3 x y^2 / (81 x^4 y^2) ) ^ (1/3) = (1 / (27 x^3) ) ^(1/3) = 1 / ( (27)^(1/3) * ^x^3^(1/3) ) = 1 / ( (3^3)^(1/3) * (x^3)^(1/3) ) = 1 / ( 3^(3 * 1/3) * x^(3 * 1/3) ) = 1 / (3 * x) = 1 / (3x). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * R.8.30. Simplify 2 sqrt(12) - 3 sqrt(27). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Here are my steps for this problem: 2 sqrt(12)-3 sqrt(27)= 2 sqrt(2*2*3)-3 sqrt(3*3*3)= 2 sqrt(4*3)-3 sqrt(9*3)= 2*2 sqrt(3)-3*3 sqrt(3)= 4 sqrt(3)-9 sqrt(3)= -5 sqrt(3) confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: 2 sqrt(12) - 3 sqrt(27) = 2 sqrt( 2*2*3) - 3 sqrt(3*3*3) = 2 sqrt(2^2 * 3) - 3 sqrt(3^3) = 2 sqrt(2^2) sqrt^3) - 3 sqrt(3^2) sqrt(3) = (2 * 2 - 3 * 3) sqrt(3) = (4 - 9) sqrt(3) = -5 sqrt(3) Extra Question: What is the simplified form of (2 sqrt(6) + 3) ( 3 sqrt(6)) and how did you get this result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: My steps for solving this are as follows: (2 sqrt(6) + 3) ( 3 sqrt(6))= (2 sqrt(6)(3 sqrt(6)+3*3 sqrt(6)= (2*3)(sqrt(6)*sqrt(6))+3*3 sqrt(6)= 6* sqrt(36)+9 sqrt(6)= 6*6+9sqrt(6)= 36+9sqrt(6) confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: (2*sqrt(6) +3)(3*sqrt(6)) expands by the Distributive Law to give (2*sqrt(6) * 3sqrt(6) + 3*3sqrt(6)), which we rewrite as (2*3)(sqrt6*sqrt6) + 9 sqrt(6) = (6*6) + 9sqrt(6) = 36 +9sqrt(6). &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * R.8. Expand (sqrt(x) + sqrt(5) )^2 YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To complete this problem we will use the distributive property. So the problem becomes sqrt(x)(sqrt(x)+sqrt(5))*sqrt(5)(sqrt(x)+sqrt(5)). Then we distribute and combine like terms so we get x+2 sqrt(x) sqrt(5)+5. confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: (sqrt(x) + sqrt(5) )^2 = (sqrt(x) + sqrt(5) ) * (sqrt(x) + sqrt(5) ) = sqrt(x) * (sqrt(x) + sqrt(5) ) + sqrt(5) * (sqrt(x) + sqrt(5) ) = sqrt(x) * sqrt(x) + sqrt(x) * sqrt(5) + sqrt(5) * sqrt(x) + sqrt(5) * sqrt(5) = x + 2 sqrt(x) sqrt(5) + 5. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * R.8.42. What do you get when you rationalize the denominator of 3 / sqrt(2) and what steps did you follow to get this result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve the problem we will rationalize the denominator, we do this by multiplying the numerator and the denominator by the denominator. So the problem becomes 3 (sqrt(2))/(sqrt(2))(sqrt(2)) which will give 3(sqrt(2))/2. confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: Starting with 3/sqrt(2) we multiply numerator and denominator by sqrt(2) to get (3*sqrt(2))/(sqrt(2)*sqrt(2)) = (3 sqrt(2) ) /2. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * R.8.48. Rationalize denominator of sqrt(2) / (sqrt(7) + 2) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve this problem we must multiply the denominator and the numerator by the denominator. So the problem becomes (sqrt(2))(sqrt(7)+2))/(sqrt(7)+2))(sqrt(7)+2). After simplifying and multiplying we get sqrt(2)(sqrt(7)+2))/3. confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ To rationalize the denominator sqrt(7) + 2 we multiply both numerator and denominator by sqrt(7) - 2. We obtain ( sqrt(2) / (sqrt(7) + 2) ) * (sqrt(7) - 2) / (sqrt(7) - 2) = sqrt(2) * (sqrt(7) - 2) / ( (sqrt(7) + 2) * ( sqrt(7) - 2) ) = sqrt(2) * (sqrt(7) - 2) / (sqrt(7) * sqrt(7) - 4) = sqrt(2) * (sqrt(7) - 2 ) / (7 - 4) = sqrt(2) * (sqrt(7) - 2 ) / 3. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok Extra Question: What steps did you follow to simplify (x^3)^(1/6) and what is your result, assuming that x is positive and expressing your result with only positive exponents? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To evaluate the following we need to multiply so the problem becomes x^(3)(1/6) so to multiply 3 by 1/6 we will create a fraction out of 3 making it 3/1*1/6which would be 3/6=1/2 so the answer would x^(1/2). confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * Express radicals as exponents and use the laws of exponents. (x^3)^(1/6) = x^(3 * 1/6) = x^(1/2). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * R.8.60. Simplify 25^(3/2). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: First I converted 25 to a number with an exponent or 5^2 to then multiply by ^3/2. So the problem becomes 5^(2)*(3/2) which gives you 5^(3). confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: 25^(3/2) = (5^2)^(3/2) = 5^(2 * 3/2) = 5^(2 * 3/2) = 5^3. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * R.8.72. Simplify and express with only positive exponents: (xy)^(1/4) (x^2 y^2) ^(1/2) / (x^2 y)^(3/4). YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve this problem we need to distribute all of the exponents to all terms that are contain in their base. Once this is done we need to perform indicated operations and when we do this and combine like terms we get the answer y^(1/2)/x^(1/4). confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: (xy)^(1/4) (x^2 y^2) ^(1/2) / (x^2 y)^(3/4) = x^(1/4) * y^(1/4) * (x^2)^(1/2) * y^2 ^ (1/2) / ( (x^2)^(3/4) * y^(3/4) ) = x^(1/4) * y^(1/4) * x^(2 * 1/2) * y^(2 * 1/2) / ( (x^(2 * 3/4) * y^(3/4) ) = x^(1/4) y^(1/4) * x^1 * y^1 / (x^(3/2) y^(3/4) ) = x^(1 + 1/4) y^(1 + 1/4) / (x^(3/2) y^(3/4) ) = x^(5/4) y^(5/4) / (x^(3/2) y^(3/4) ) = x^(5/4 - 3/2) y^(5/4 - 3/4) = x^(5/4 - 6/4) y^(2/4) = x^(-1/4) y^(1/2) = y^(1/2) / x^(1/4). STUDENT QUESTION I wrote the entire given solution on paper to see how to solve, but I am still confused when it gets to the = x^(1 + 1/4) y^(1 + 1/4) / (x^(3/2) y^(3/4) How do you get 1 + ¼? Does the 1 come from the xy on the right of the numerator? INSTRUCTOR RESPONSE The numerator of the expression x^(1/4) y^(1/4) * x^1 * y^1 / (x^(3/2) y^(3/4) ) contains two factors which are powers of x. The two are x^(1/4) and x^1 (the latter could be written just as x, but to apply the laws of exponents it's not a bad idea to write the exponent explicitly). When you multiply these two factors, the laws of exponent tell you that you get x^(1/4 + 1) = x^(5/4). The same thing happens with the y factors. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * R.8.84. Express with positive exponents: ( (9 - x^2) ^(1/2) + x^2 ( 9 - x^2) ^(-1/2) ) / (9 - x^2), defined for -3 < x < 3. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: ( (9 - x^2) ^(1/2) + x^2 ( 9 - x^2) ^(-1/2) ) / (9 - x^2) = ( (9 - x^2) ^(1/2) + x^2 / ( 9 - x^2) ^(1/2) ) / (9 - x^2) = [ (9 - x^2) (1/2) / (9 - x^2)^1 ] + [ x^2 / ( (9 - x^2)^(1/2) * (9 - x^2)^ 1) ] = (9 - x^2) ^(-1/2) + x^2 / (9 - x^2)^(3/2) = 1 / (9 - x^2)^(1/2) + x^2 / (9 - x^2)^(3/2). In the third step the exponent ^1 on the (9 - x^2) expressions wasn't necessary, but was included to explicitly show the exponents and the application of the laws of exponents. The first term in the 4th step is obtained as follows: (9 - x^2) (1/2) / (9 - x^2)^1 = (9 - x^2) ^ (1/2 - 1) = (9 - x^2)^(-1/2). EXPANDED EXPLANATION OF STEPS ( (9 - x^2) ^(1/2) + x^2 ( 9 - x^2) ^(-1/2) ) / (9 - x^2) = ( (9 - x^2) ^(1/2) + x^2 / ( 9 - x^2) ^(1/2) ) / (9 - x^2) In the above step we have replace (9 - x^2) ^ (-1/2) in the numerator by (9 - x^2)^(1/2) in the denominator, following the rule that a^-b = 1 / (a^b) with a = (9 - x^2) and b = 1/2. ( (9 - x^2) ^(1/2) + x^2 / ( 9 - x^2) ^(1/2) ) / (9 - x^2) = [ (9 - x^2) (1/2) / (9 - x^2)^1 ] + [ x^2 / ( (9 - x^2)^(1/2) * (9 - x^2)^ 1) ] The above step is just the distributive law of multiplication over addition, in which we multiply through the expression ( (9 - x^2) ^(1/2) + x^2 / ( 9 - x^2) ^(1/2) ) by 1 / (9 - x^2). The brackets [ ] have been added to clarify the two terms in the resulting expression, but the expression has the same meaning without them. [ (9 - x^2) (1/2) / (9 - x^2)^1 ] + [ x^2 / ( (9 - x^2)^(1/2) * (9 - x^2)^ 1) ] = (9 - x^2) ^(-1/2) + x^2 / (9 - x^2)^(3/2) (9 - x^2) ^ (1/2) / (9 - x^2)^2 = (9 - x^2)^-1/2, by the laws of exponents; and (9 - x^2)^(1/2) * (9 - x^2) = (9 - x^2) ^(3/2) by the laws of exponents. (9 - x^2) ^(-1/2) + x^2 / (9 - x^2)^(3/2) = 1 / (9 - x^2)^(1/2) + x^2 / (9 - x^2)^(3/2) (9 - x^2) ^(-1/2) has been replaced by 1 / (9 - x^2) ^(1/2), using a^-b = 1 / a^b. All the exponents in the final expression are positive. It would also be possible to factor out 1 / (9 - x^2)^(1/2), though this wasn't requested and isn't necessary in the problem as stated. The result would be 1 / (9 - x^2)^(1/2) * ( 1 + x^2 / (9 - x^2) ). This could be further simplified to 1 / (9 - x^2)^(1/2) * ( 9 / (9 - x^2) ) , which is equal to 9 / (9 - x^2)^(3/2) You aren't expected to be able to read these expressions. You are expected to be able to write them out in standard form; having done so you should understand. However these expressions are fairly challenging, so some of the expressions will be depicted here ( (9 - x^2) ^(1/2) + x^2 ( 9 - x^2) ^(-1/2) ) / (9 - x^2) would be depicted in standard notation as (9 - x^2) ^(-1/2) + x^2 / (9 - x^2)^(3/2) would be depicted in standard notation as 1 / (9 - x^2)^(1/2) + x^2 / (9 - x^2)^(3/2) would be depicted in standard notation as &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: * R.8.108. v = sqrt(64 h + v0^2); find v for init vel 0 height 4 ft; for init vel 0 and ht 16 ft; for init vel 4 ft / s and height 2 ft. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your Solution: When vel=0 and h=4 the equation is v = sqrt(64 * 4 + 0^2) = sqrt(256) =16. When vel =0 and h=16 the equation is v = sqrt(64 * 16 + 0^2) = sqrt(1024) = 32. When vel =4 and h=2 the equation is v = sqrt(64 * 2 + 4^2) = sqrt(144) =12. To solve for these problems we simply need to plug in the correct number value for the correct variable and then perform the indicated operation. confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If initial velocity is 0 and height is 4 ft then we substitute v0 = 0 and h = 4 to obtain • v = sqrt(64 * 4 + 0^2) = sqrt(256) =16. If initial velocity is 0 and height is 16 ft then we substitute v0 = 0 and h = 4 to obtain • v = sqrt(64 * 16 + 0^2) = sqrt(1024) = 32. Note that 4 times the height results in only double the velocity. If initial velocity is 4 ft / s and height is 2 ft then we substitute v0 = 4 and h = 2 to obtain • v = sqrt(64 * 2 + 4^2) = sqrt(144) =12. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok Extra Question: What is the simplified form of (24)^(1/3) and how did you get this result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve this problem we need to find a cube to match the cubed root. So when factoring 24 we discover that 24 can be divided into 8and 3. Considering that 8 is a perfect cube we have found our cube. So the problem becomes (8)^(1/3)*(3)^(1/3). When solving the cube root of eight is 2 this the answer is 2*3^(1/3). confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * (24)^(1/3) = (8 * 3)^(1/3) = 8^(1/3) * 3^(1/3) = 2 * 3^(1/3) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: Extra Question: What is the simplified form of (x^2 y)^(1/3) * (125 x^3)^(1/3) / ( 8 x^3 y^4)^(1/3) and how did you get this result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: After distributing and combining like terms you will get 5 ( x^(2/3) ) / (2 y). this is obtained by simply following the laws of exponents and orders of operations. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * (x^2y)^(1/3) * (125x^3)^(1/3)/ ( 8 x^3y^4)^(1/3) (x^(2/3)y^(1/3)* (5x)/[ 8^(1/3) * xy(y^(1/3)] (x^(2/3)(5x) / ( 2 xy) 5( x^(5/3)) / ( 2 xy) 5x(x^(2/3)) / ( 2 xy) 5 ( x^(2/3) ) / (2 y) ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: Extra question. What is the simplified form of sqrt( 4 ( x+4)^2 ) and how did you get this result? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve this problem we simply take the sqrt of both terms in the problem. So sqrt(4(x+4)^2) would turn into sqrt(4) sqrt(x+4)^2 once this is reached we perform the indicated operation and when that is completed we have 2*absolute value of x+4. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: We use two ideas in this solution: • sqrt(a b) = sqrt(a) * sqrt(b) and • sqrt(x^2) = | x | To understand why sqrt(x^2) = | x | and not just x consider the following: • Let x = 5. Then sqrt(x^2) = sqrt( 5^2 ) = sqrt(25) = 5, so sqrt(x^2) = x. It is also clear that in this case, | x | = | 5 | = 5, so | x | = x, and we can say that sqrt(x^2) = | x |. • Now let x = -5. We get sqrt(x^2) = sqrt( (-5)^2 ) = sqrt(25) = 5. In this case sqrt(x^2) = 5 but x is not equal to 5, so sqrt(x^2) is not x. However, in this case | x | = | -5 | = 5, so it is the case the sqrt(x^2) = | x |. Using these ideas we get • sqrt( 4 ( x+4)^2 ) = sqrt(4) * sqrt( (x+4)^2 ) = 2 * | x+4 | ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: * Add comments on any surprises or insights you experienced as a result of this assignment. " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: * Add comments on any surprises or insights you experienced as a result of this assignment. " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!