#$&* course Mth 158 If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.
.............................................
Given Solution: * * The inverse proportionality to the square root gives us y = k / sqrt(x). y = 4 when x = 9 gives us 4 = k / sqrt(9) or 4 = k / 3 so that k = 4 * 3 = 12. The equation is therefore y = 12 / sqrt(x). ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * 2.5.12 / 2.7.12 (was 2.6.10). z directly with sum of cube of x and square of y; z=1 and x=2 and y=3. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve this we have to interpret what information we have. What this is telling us is z=k(x^3+y^2) now we plug in the information we have giving 1=k(2^3+3^2) when we simplify this we get 1=k(17). Now we divide by 17 to get that k=1/17 which changes our equation of proportionality to z=(x^3+y^2)/17. confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The proportionality is z = k (x^3 + y^2). If x = 2, y = 3 and z = 1 we have 1 = k ( 2^3 + 3^2) or 17 k = 1 so that k = 1/17. The proportionality is therefore z = (x^3 + y^2) / 17. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * 2.5.20 / 2.7.20 (was 2.6.20). Period varies directly with sqrt(length), const 2 pi / sqrt(32) YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: If we interpret this like the problems prior we get t=k sqrt(l) which plugign in our information gives us t=2pi/sqrt(32)*sqrt(L) this is our equation. confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * The equation is T = k sqrt(L), with k = 2 pi / sqrt(32). So we have T = 2 pi / sqrt(32) * sqrt(L). ** **** What equation relates period and length? **** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok ********************************************* Question: * 2.5.42 / 2.7.42 (was 2.7.34 (was 2.6.30). Resistance dir with lgth inversely with sq of diam. 432 ft, 4 mm diam has res 1.24 ohms. **** What is the length of a wire with resistance 1.44 ohms and diameter 3 mm? Give the details of your solution. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: To solve this we interpret the problem with the information given, this gives r=k*L/d^2, now that we have our equation we input the info given. This gives 1.24=k*432/4^2 and now we simplify giving r=.046*L/d^2. Now to find when the resistance will be 1.44 and the diameter is 3, we plug this info into our equation and solve for l giving l=1.44*3^2/.046 and solving this for l gives us l=281. So the wire should be 281 ft long. confidence rating #$&*:ok ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: * * We have R = k * L / D^2. Substituting we obtain 1.24 = k * 432 / 4^2 so that k = 1.24 * 4^2 / 432 = .046 approx. Thus R = .046 * L / D^2. Now if R = 1.44 and d = 3 we find L as follows: First solve the equation for L to get L = R * D^2 / (.046). Then substitute to get L = 1.44 * 3^2 / .046 = 280 approx. The wire should be about 280 ft long. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary):ok ------------------------------------------------ Self-critique Rating:ok " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!