#$&* course Mth 151 3/8 Around 6:30 015. `query 15
.............................................
Given Solution: `a** 'Milk contains calcium' can be put into p -> q form as 'if it's milk then it contains calcium'. The converse of p -> q is q -> p, which would be 'if it contains calcium then it's milk' The inverse of p -> q is ~p -> ~q, which would be 'if it's not milk then it doesn't contain calcium'. The contrapositive of p -> q is ~q -> ~p, which would be 'if it doesn't contain calcium then it's not milk'. Note how the original statement and the contrapositive say the same thing, and how the inverse and the converse say the same thing. NOTE ON ANOTHER STATEMENT: If the statement is 'if it ain't broke don't fix it: Converse: If you don't fix it, then it ain't broke Inverse: If it's broke, then fix it. Contrapositive: If you fix it, then it's broke. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qQuery 3.4.18 state the contrapositive of 'if the square of the natural number is even, then the natural number is even.' Using examples decide whether both are truth or false. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: if a natural number isn't even then its square isn't even confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The statement is of the form p -> q with p = 'square of nat number is even' and q = 'nat number is even'. The contrapositive of p -> q is ~q -> ~p, which in this case would read 'if a natural number isn't even then its square isn't even'. STUDENT RESPONSE WITH SOMEWHAT PICKY BUT IMPORTANT INSTRUCTOR CORRECTION: if the natural number isn't even , then the square of a natural numbewr isn't even Good. More precisely: if the natural number isn't even , then the square of THAT natural number isn't even. To say that the square of a natural number isn't even doesn't necessarily refer to the given uneven natural number. COMMON ERROR WITH INSTRUCTOR COMMENT: The natural number is not even, if the square of a natural number is not even. ex.-3^2=9,5^2=25 This statement is true. ** You have stated the inverse ~p -> ~q. It doesn't matter that the 'if' is in the second half of your sentence, the 'if' in your statement still goes with ~p when it should go with ~q. COMMON ERROR WITH INSTRUCTOR COMMENT: If the natural number is not even, then the square of the natural number is not even. This statement does not involve square roots. It addresses only squares. And 26 isn't the square of a natural number. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qExplain how you used examples to determine whether both statements are true or both false. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: the numbers and squares are either both even, or both false. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The first statement said that if the square of a natural number is even then the natural number is even. For example, 36 is the square of 6, 144 is the square of 12, 256 is the square of 16. These examples make us tend to believe that the statement is true. The contrapositive says that if the natural number is even then its square isn't even. For example, the square of the odd number 7 is 49, which is not an even number. The square of the odd number 13 is 169, which is not an even number. This and similar examples will convince us that this statement is true. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qExplain why either both statements must be true, or both must be false. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: the truth tables and the contrapostitve are the same. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The reason is that the truth tables for the statement and its contrapositive are identical, so if one is true the other is true and if one is false the other must be false. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qQuery 3.4.24 write 'all whole numbers are integers' in form 'if p then q'. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: if it's a whole number then it's an integer confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** p could be 'it's a whole number' and q would then be 'it's an integer'. The statement would be 'if it's a whole number then it's an integer'. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: