#$&* course Mth 151 3/22 11 30 024. `query 24
.............................................
Given Solution: `a** The Goldbach conjecture says that every even number greater than 2 can be expressed as the sum of two primes. 17 + 51 = 68 would verify the Goldbach conjecture except that 51 is not prime (51 = 3 * 17). So this sum does not verify the Goldbach conjecture. A sum that would satisfy the conjecture for 68 is 31 + 37 = 68, since 31 and 37 are both prime. COMMON ERROR AND INSTRUCTOR COMMENT: false 68 isn't a prime number Close, but 68 is the number being tested, which doesn't have to be prime (in fact since the conjecture addresses even numbers greater than two cannot be prime). The number being tested by the Goldback Conjecture is to be 'an even number greater than 2', which cannot be a prime number. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qquery 5.2.20 if 95 abundant or deficient? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: deficient because 1+5+19=25 confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a**The proper factors of 95 are 1, 5 and 19. These proper factors add up to 25. Since the sum of the proper factors is less than 95, we say that 95 is deficient. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q5.2.36 p prime and a, p rel prime then a^(p-1) - 1 div by p YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** This result is verified for both a=3, p=5 and a=2, p=7: If a = 3 and p = 5 then a and p have no common factors, so the conditions hold. We get a^((p-1))-1 = 3^(5-1) - 1 = 3^4 - 1 = 81 - 1 = 80. This number is to be divisible by p, which is 5. We get 80 / 5 = 16, so in this case a^(p-1)-1 is divisible by p. If a = 2 and p = 7 then a and p have no common factors, so the conditions hols. We get a^((p-1))-1 = 2^(7-1) - 1= 2^7 - 1 = 64 - 1 = 63. This number is to be divisible by p, which is 7. We get 63 / 7 = 9, so in this case a^(p-1)-1 is again divisible by p. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `qquery 5.2.42 does the nth perfect number have n digits? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Yes. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The answer is 'no'. The first perfect number, 6, has one digit. The second perfect number, 28, has 2 digits. So far so good. The third perfect number is 496. Still OK. The fourth is 8128, so we're still in good shape. But the fifth perfect number is 33,550,336, which has 7 digits, so the pattern is broken. The pattern never gets re-established. Note that the sixth perfect number has ten digits. ** " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: ********************************************* Question: `qquery 5.2.42 does the nth perfect number have n digits? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Yes. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The answer is 'no'. The first perfect number, 6, has one digit. The second perfect number, 28, has 2 digits. So far so good. The third perfect number is 496. Still OK. The fourth is 8128, so we're still in good shape. But the fifth perfect number is 33,550,336, which has 7 digits, so the pattern is broken. The pattern never gets re-established. Note that the sixth perfect number has ten digits. ** " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!
#$&* course Mth 151 3/22 11 30 025. `query 25
.............................................
Given Solution: `a** The prime factorizations are 180=2 ^2 * 3 ^ 2 * 5 and 300=2 ^2 * 3 ^1 * 5^2. They have in commin 2^2, 3 and 5, and no higher power of any of these factors. Since 2^2 * 3^1 * 5^1=60 the greatest common factor is 60. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q query 5.3.24 Euclidean algorithm to find GCF(25,70) Show how you used the Euclidean algorithm to find the greatest common factor of the two numbers. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: divide the larger number by the small number confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** To apply the Euclidean algorithm we divide the larger number by the smaller, obtaining a remainder. We then divide the remainder by the divisor and repeat this process until we get 0 remainder. The greatest common divisor is the last divisor. In this case 70 divided by 25 gives us remainder 20. Then we divide the previous divisor 25 by the remainder 20, obtaining remainder 5. Then we divide the previous divisor, which is now 20, by the remainder 5. The remainder of this division is 0. So the last divisor, which is 5, is the greatest common factor. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q query 5.3.36 LCM of 24, 36, 48 How did you use the prime factors of the given numbers to find their greatest common factor? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Just keep factoring them out. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The prime factorizations are 24 = 2*2*2*3, 36 = 2*2*3*3, 48 = 2*2*2*2*3. The smallest number that includes all these factors has four 2's and two 3's. 2*2*2*2 * 3*3 = 144. So 144 is the GCF. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: ********************************************* Question: `q query 5.3.36 LCM of 24, 36, 48 How did you use the prime factors of the given numbers to find their greatest common factor? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Just keep factoring them out. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: `a** The prime factorizations are 24 = 2*2*2*3, 36 = 2*2*3*3, 48 = 2*2*2*2*3. The smallest number that includes all these factors has four 2's and two 3's. 2*2*2*2 * 3*3 = 144. So 144 is the GCF. ** &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): ------------------------------------------------ Self-critique Rating: #*&!