chap1202

#$&*

course Mth 152

10/21/2012 6:39PM

006.  ``q Query 6 

 

*********************************************

question:  `q Query 12.1.6 8 girls 5 boys

 

 What is the probability that the first chosen is a girl?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

There are 13 total choices and 8 of the choices are girls, so P(girl) = 8/13 = .615 probability that a girl will be chosen first.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a ** Assuming the choice is completely random there are 13 possible choices, 8 of which are female so we have

 

P(female) = 8 / 13  = .6154, approx. **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

question:  `q Query   12.1.12  3 fair coins:  Probability and odds of 3 Heads.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

There are 2^3 = 8 outcomes of tossing 3 fair coins and there is only 1 possibility of 3 heads so P(3 heads) = 1/8. There is 1 favorable outcome and 7 unfavorable outcomes so Odds(3 heads) = 1/7.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`aThere are 8 equally likely possible outcomes when flipping 3 fair coins.  You can list them:  hhh, hht, hth, htt, thh, tht, tth, ttt.  Or you can use the fact that there are 2 possibilities on each flip, therefore 2*2*2 = 2^3 = 8 possible outcomes.

 

Only one of these outcomes, hhh, consists of 3 heads.

 

The probability is therefore

 

P(3 heads) = # of outcomes favorable/total number of possible outcomes = 1 / 8.

 

The odds in favor of three heads are

 

Odds ( 3 heads ) = # favorable to # unfavorable = 1 to 7. **

 

STUDENT QUESTION

 

 I don’t understand where to 7 came from. I got there are 8 possibilities.

INSTRUCTOR RESPONSE

 

Odds = # favorable to # unfavorable.

In this case there we have 1 favorable and 7 unfavorable outcomes.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

question:  `q Query 12.1.20 P(pink) from two pink parents (Rr and Rr)

 

 What is the probability of a pink offspring.

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

There are 4 possible outcomes and 2 of them produce a pink flower, so P(pink) = 2/4 = 1/2.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a The genes R and r stand for the red and white genes.

 

A pink offspring is either Rr or rR.  RR will be red, rr white.

 

      R    r

R  RR  Rr

r   rR    rr

shows that {RR, Rr, rR, rr} is the set of equally likely outcomes.  We season two of the four possible outcomes, rR and Rr, will be pink.

 

So the probability of pink offspring is 2/4 = 1 / 2. **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

question:  `q Query 12.1.33 cystic fibrosis in 1 of 2K cauc, 1 in 250k noncauc

 

 What is the empirical probability, to 6 places, that a randomly chosen non-Caucasian newborn will have cystic fibrosis?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

There is a 1 in 250,000 chance that the newborn will have cystic fibrosis, which equals 1/250000 = .000004

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`aThere is 1 chance in 250,000 so the probability is 1 / 250,000 = 4 * 10^-6, or .000004. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

question:  12.1.40 Cc genes carrier, cc has disease; 2 carriers first child has disease **** What is the probability that the first child has the disease?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

There are 4 possibilities, which are CC, Cc, cC, cc, and cc is the only one that carries a disease, so there is 1/4 probability that the first child has the disease.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`aIf cc has the disease, then the probability that the first child will have the disease is 1/4.  **

 

What is the sample space for this problem?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

CC, Cc, cC, cc

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`aThe sample space is {CC, Cc. cC, cc}. **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

question: 

 

12.1.61 & 60 & 36 in class, 3 chosen **** What is the probability that the choice will be the given three people in any order?           

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

There are 36 students and 3 students will be chose so there are C(36,3) possibilities and 1/C(36,6) probability of 1 of them being chosen.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`aThere are P(36,3) possible ordered choices of 3 people out of the 36.

 

P(36,3) = 36! / (36-3)! = 36! / 33! = (36*35*34*33*32*31*...*1) / (33*32*31*...*1) = 36*35*34=40,000 or so. 

 

The probability of any given choice is therefore 1 / P(36,3) = 1/40,000 = .000025, approx..

 

For any given set of three people there are six possible orders in which they can be chosen.  So the probability of the three given people, in any order, is 6 * probability of a given order = 6 / P(36,3) = 6/40,000 = .00015. 

 

Alternatively we can say that we are choosing 3 of 36 people without regard for order, so there are C(36,3) possibilities and the probability of any one of them is 1 / C(36,3).  **

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

question:  `q Query   12.1.64 & 75  digits 1, 2, ..., 5 rand arranged; prob even, prob digits 1 and 5 even What is the probability that the resulting number is even and how did you obtain your answer?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

There are 2/5 probability that the number will be even, because if it ends in 2 or 4 its is even and if it ends in 1, 3, and 5 and it is odd. There are P(5,2) = 20 choices for digits 1 and 5, and P(2,2) = 2 choices for digits 1 and 5 to be even. So there are 2/20 or 1/10 probability that both digits will be even.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`aThe number will be even if it ends in 2 or 4.  There are 5 possible ending numbers.  So 2 of the 5 possible ending numbers are even and the probability of an even number is 2/5.

 

We analyze in two ways the number of ways to choose a number with digits 1 and 5 even.

 

First way: 

 

There are 5! = 120 possible arrangements of the 5 digits. 

 

There are only two possible even digits, from which we will choose digit 1 and digit 5.  The order of our choice certainly matters, since a different choice will give us a different 5-digit number.  So we are choosing 2 digits from a set of 2 digits, where order matters.  We therefore have P(2, 2) = 2*1 / 0! = 2 ways to choose these digits.

 

The remaining 3 digits will comprise digits 2, 3 and 4.  We are therefore choosing 3 digits from a set of 3, in order.  There are P(3, 3) = 3*2*1/0! = 6 ways to do so.

 

To obtain our number we can choose digits 1 and 5, then digits 2, 3 and 4.  There are P(2, 2) * P(3, 3) = 2 * 6 = 12 ways to do this.

 

So the probability that digits 1 and 5 are even is 12 / 120 = 1/10.

 

Second way:

 

A simpler solution looks at just the possibilities for digits 1 and 5.  There are P(2, 2) = 2 choices for which these digits are even, and P(5, 2) = 20 total choices for these two digits.  The probability that both will be even is therefore 2/20 = 1/10, the same as before.  **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good work. Let me know if you have questions. &#