chap0904

#$&*

course Mth 152

12/15/2012 3:49PM

023.  ``q Query 23 

 

*********************************************

Question:  `q Query 9.4.6  ABC, DEF transversed by EOB at rt angles; OB = EO; show triangles ABO and FEO congruent.

 

  ****   Explain the argument you used to show that the triangles were congruent.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

The triangle is congruent because of the SAS congruence property.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a SAS:  Angle AOB and Angle FOE are equal because they are vertical angles, so we have 2 sides and the included angle of triangle AOB equal, respectively, to 2 sides and the included angle of triangle FOE. Thus, the Side-Angle-Side property holds that triangle AOB is congruent to triangle FOE.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `q Query 9.4.18  ACB and QPR similar triangles, C and P rt angles, A=42 deg  ****   List the measures of the three angles of each triangle and explain how you obtained each.

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

For triangle ACB angle A and C are given which are 42 deg and 90 deg, so angle C = 180 - 42 - 90 = 48 deg. On triangle PQR angle P is also a right angle and angle Q equals angle A, which is 42 deg, so angle R is also 48 deg.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a It is given that Angle A = 42 deg. and Angle C = 90 deg. Since all three angles must add up to equal 180 then Angle B = 48 deg.

 

 In the second triangle, Angle P must equal 90 deg. since it is a right angle.

 

To find Angle R,

 

90(48) = 90R sp

4320 = 90R and

48 = R   Angle R = 48 deg.

 

To find Angle Q,

90/90 = Q/42

Q = 42

Angle Q = 42 deg.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `q Query 9.4.24  similar triangles, corresp sides a, b, 75; 10, 20, 25  ****   What are the lengths of sides a and b and how did you obtain each?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

All the angles are the same degrees. So I divided 75 by 25 to get 3 and multiplied 10 and 20 by 3 to get side A and B, which are A = 30 and B = 20.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a To find a,

 

75 (10) = 25a

750 = 25a

a= 30

 

To find b,

75/25 = b/20

1500/25 = 25b/25 so

b = 60.

 

a = 30, b = 60 and c = 75.

 

These values are triple the values of the similar triangle.

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `q Query 9.4.42  rt triangle a = 7, c = 25, find b 

 

****   What is the length of side b and how did you obtain it?

 

 ****   What does the Pythagorean Theorem say about the triangle as given and how did you use this Theorem to find the length of b?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

Using the Pythagorean Theorem I worked out

7^2 + b^2 = 25^2

49 + b^2 = 625

b^2 = 576

b = 24

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a By the Pythagorean Theorem a^2 + b^2 = c^2.  So we have

 

49 + b^2 = 625   Subtract 49 from both sides to get

b^2 = 576.  Take the square root of both sides to get

b = 24.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `q Query 9.4.60  m, (m^2 +- 1) / 2 gives Pythagorean Triple  ****   What Pythagorean Triple is given by m = 5?

 

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

The first number is 5 because m = 5. The second number is (5^2 - 1)/2 = (25 - 1)/2 = 24/2 = 12. The last number is (5^2 + 1)/2 = (25 + 1)/2 = 26/2 = 13.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a ** If m = 5 then

 

(m^2 + 1) / 2 = (5^2 + 1 ) / 2 = 26 / 2 = 13

(m^2 - 1) / 2 = (5^2 - 1 ) / 2 = 24 / 2 = 12

 

So the Pythagorean triple is 5, 12, 13.

 

We can verify this:

 

5^2 + 12^2 should equal 13^2.

 

5^2 + 12^2 = 25 + 144 = 169.

13^2 = 169.

 

The two expressions are equal so this is indeed a Pythagorean triple. **

  ****   How did you verify that your result is indeed a Pythagorean Triple?

Student Answer:  The numbers checked out when substituted into the Pythagorean Theorem.

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `q Query 9.4.75  10 ft bamboo broken, upper end touches ground 3 ft from stem. 

 

****   How high is the break, and how did you obtain your result?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

Using the Pythagorean Theorem I worked out

x^2 + 3^2 = (10 - x)^2

x^2 + 9 = 100 - 20x + x^2

9 = 100 - 20x

-20x = 91

x = 4.55

Then I subtracted 4.55 from 10 to find out the break was 5.45 ft high.

 

 

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a ** If the break is at height x then the hypotenuse, consisting of the broken part, is at height 10 - x.

 

The triangle formed by the vertical side, the break and the ground therefore has legs x and 3 and hypotenuse 10-x.

 

So we have

 

x^2 + 3^2 = (10-x)^2.  Squaring the 3 and the right-hand side:

x^2 + 9 = 100 - 20 x + x^2.  Subtracting x^2 from both sides

9 = 100 - 20 x so that

-20 x = -91 and

x = 4.55.

 

The break occurs at height 4.55 ft and the broken part has length 10 - 4.55 = 5.45, or 5.45 feet.  **

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary): OK

 

 

------------------------------------------------

Self-critique Rating: OK

*********************************************

Question:  `q Query 9.4.84  isosceles triangle perimeter 128 alt 48  ****   What is the area of the triangle and how did you find

 

it?

 

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution: 

 

 

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution: 

`a ** This problem is algebraically demanding.  Your text might have a slicker way to do this, but the following works:

 

If the equal sides are x then the base is 128 - 2 x.

 

The altitude forms a right triangle with half the base and one of the equal sides.  The sides of this right triangle are therefore 48, 1/2 (128 - 2x) = 64 - x, and x.

 

The right angle is formed between base and altitude so x is the hypotenuse.

 

We therefore have

 

48^2 + (64 - x)^2 = x^2 so that

48^2 + (64 - x) ( 64 - x) = x^2 or

48^2 + 64 ( 64-x) - x(64 - x) = x^2 or

48^2 + 64^2 - 64 x - 64 x + x^2 = x^2 or

48^2 + 64^2 - 128 x + x^2 = x^2.  Subtracting x^2 from both sides we get

48^2 + 64^2 - 128 x = 0.  Adding 128 x to both sides we get

48^2 + 64^2 = 128 x.  Multiplying both sides by 1/128 get have

(48^2 + 64^2) / 128 = x.  Evaluating this expression we end up with x = 50. 

 

The base of the triangle is therefore 128 - 2x = 128 - 2 * 50 = 128 - 100 = 28.

 

So its area is 1/2 b h = 1/2 * 28 * 48 = 672.  **

 

DRV

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

 

 

------------------------------------------------

Self-critique Rating:

*********************************************

Question:  `q Query   Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question:  `q Query   Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Your work looks very good. Let me know if you have any questions. &#