course Phy 121 I've completed the describing graphs excercise. ????Iw????y???????·assignment #001001. Only assignment: prelim asst
......!!!!!!!!...................................
06:39:12 `q001. Part 1 includes six activities. If you have completed an activity, just enter the answer 'completed'. This question is appearing in the Question box. The box to the right is the Answer box, where you will type in your answers to the questions posed here. To use this program you read a question, then enter your answer in the Answer box and click on Enter Answer. In your answers give what is requested, but don't go into excruciating detail. Try to give just enough that the instructor can tell that you understand an item. After entering an answer click on Next Question/Answer above the Question box. Do you understand these instructions?
......!!!!!!!!...................................
RESPONSE --> Yes.
.................................................
......!!!!!!!!...................................
06:42:27 This program has created the folder c:\vhmthphy on your hard drive. Browse to that folder and locate the file whose name begins with SEND. The name of this file will also include your name, as you gave it to the program, and the file will show as a Text file. Never tamper with a SEND file in any way. It contains internal codes as if these codes are tampered with you won't get credit for the assignment. However you are welcome to copy this file to another location and view it, make changes, etc. Just be sure that when requested to do so you send the instructor the original, tamper-free file. State in the Answer box whether or not you have been able to locate the SEND file. Don't send the SEND file yet. Note that more questions/instructions remain in the q_a_prelim.
......!!!!!!!!...................................
RESPONSE --> Yes. I have located it.
.................................................
......!!!!!!!!...................................
06:43:36 `q002. Note that every time you click on Enter Answer the program writes your response to your SEND file. Even if the program disappears all the information you have entered with the Enter Answer button will remain in that file. This program never 'unwrites' anything. Even if this program crashes your information will still be there in the SEND file. Explain this in your own words.
......!!!!!!!!...................................
RESPONSE --> The program will capture all my responses to this course (as long as I'm working from that computer or saving the data).
.................................................
......!!!!!!!!...................................
06:46:07 Any time you do not receive a reply from the instructor by the end of the following day, you should resubmit your work using the Resubmit Form at http://www.vhcc.edu/dsmith/genInfo/. You have already seen that page, but take another look at that page and be sure you see the Submit Work form, the Resubmit Form and a number of other forms that will be explained later. Enter a sentence or two describing the related links you see at that location.
......!!!!!!!!...................................
RESPONSE --> There are forms concerning the class.
.................................................
......!!!!!!!!...................................
06:46:39 `q003. If you are working on a VHCC computer, it is probably set up in such a way as to return to its original configuration when it is rebooted. To avoid losing information it is suggested that you back up your work frequently, either by emailing yourself a copy or by using a key drive or other device. This is a good idea on any computer. Please indicate your understanding of this suggestion.
......!!!!!!!!...................................
RESPONSE --> I need to backup my work.
.................................................
???????????r???????a?? Student Name: assignment #001 001. typewriter notation
......!!!!!!!!...................................
07:22:34 `q001. Explain the difference between x - 2 / x + 4 and (x - 2) / (x + 4).
......!!!!!!!!...................................
RESPONSE --> The ( ) indicate that the the functions should be done prior to solving the problem.
.................................................
......!!!!!!!!...................................
07:23:12 The order of operations dictates that grouped expressions must be evaluated first, that exponentiation must be done before multiplication or division, which must be done before addition or subtraction. It makes a big difference whether you subtract the 2 from the 2 or divide the -2 by 4 first. If there are no parentheses you have to divide before you subtract: 2 - 2 / 2 + 4 = 2 - 1 + 4 (do multiplications and divisions before additions and subtractions) = 5 (add and subtract in indicated order) If there are parentheses you evaluate the grouped expressions first: (x - 2) / (x - 4) = (2 - 2) / ( 4 - 2) = 0 / 2 = 0.
......!!!!!!!!...................................
RESPONSE --> Ok.
.................................................
......!!!!!!!!...................................
07:26:55 `q002. Explain the difference between 2 ^ x + 4 and 2 ^ (x + 4). Then evaluate each expression for x = 2. Note that a ^ b means to raise a to the b power. This process is called exponentiation, and the ^ symbol is used on most calculators, and in most computer algebra systems, to represent exponentiation.
......!!!!!!!!...................................
RESPONSE --> 2 ^ x + 4 would just take 2 to the expression of x whereas 2 ^ (x + 4) would take it to the expression of x + 4. if x = 2 then, 2 ^ 2 + 4 = 8 and 2 ^ (2 + 4) = 64
.................................................
......!!!!!!!!...................................
07:27:49 2 ^ x + 4 indicates that you are to raise 2 to the x power before adding the 4. 2 ^ (x + 4) indicates that you are to first evaluate x + 4, then raise 2 to this power. If x = 2, then 2 ^ x + 4 = 2 ^ 2 + 4 = 2 * 2 + 4 = 4 + 4 = 8. and 2 ^ (x + 4) = 2 ^ (2 + 4) = 2 ^ 6 = 2*2*2*2*2*2 = 64.
......!!!!!!!!...................................
RESPONSE --> Ok.
.................................................
......!!!!!!!!...................................
07:36:09 `q003. What is the numerator of the fraction in the expression x - 3 / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x? What is the denominator? What do you get when you evaluate the expression for x = 2?
......!!!!!!!!...................................
RESPONSE --> numerator = x - 3 denominator = [ (2x-5)^2 * 3x + 1] -2 + 7x if x = 2 then; 2-3/ [ (2(2) - 5) ^ 2 * 3(2) + 1] -2 + 7(2) 2-3/ [ (4-5) ^ 2 * 6 + 1] -2 +14 2-3/ [ 1 * 7 ] - 2 + 14 2-3/ 7 - 2 + 14 -1/ 19
.................................................
......!!!!!!!!...................................
07:39:25 The numerator is 3. x isn't part of the fraction. / indicates division, which must always precede subtraction. Only the 3 is divided by [ (2x-5)^2 * 3x + 1 ] and only [ (2x-5)^2 * 3x + 1 ] divides 3. If we mean (x - 3) / [ (2x-5)^2 * 3x + 1 ] - 2 + 7x we have to write it that way. The preceding comments show that the denominator is [ (2x-5)^2 * 3x + 1 ] Evaluating the expression for x = 2: - 3 / [ (2 * 2 - 5)^2 * 3(2) + 1 ] - 2 + 7*2 = 2 - 3 / [ (4 - 5)^2 * 6 + 1 ] - 2 + 14 = evaluate in parenthese; do multiplications outside parentheses 2 - 3 / [ (-1)^2 * 6 + 1 ] -2 + 14 = add inside parentheses 2 - 3 / [ 1 * 6 + 1 ] - 2 + 14 = exponentiate in bracketed term; 2 - 3 / 7 - 2 + 14 = evaluate in brackets 13 4/7 or 95/7 or about 13.57 add and subtract in order. The details of the calculation 2 - 3 / 7 - 2 + 14: Since multiplication precedes addition or subtraction the 3/7 must be done first, making 3/7 a fraction. Changing the order of the terms we have 2 - 2 + 14 - 3 / 7 = 14 - 3/7 = 98/7 - 3/7 = 95/7.
......!!!!!!!!...................................
RESPONSE --> Wow. I was way off.
.................................................
......!!!!!!!!...................................
07:53:27 `q004. Explain, step by step, how you evaluate the expression (x - 5) ^ 2x-1 + 3 / x-2 for x = 4.
......!!!!!!!!...................................
RESPONSE --> if x = 4 then; (substitiution) (4 - 5) ^ 2*4-1 + 3 / 4-2 (I would do () work first) (-1) ^ 2*4-1 + 3 /4-2 (Then I would work order of op.) 4 - 1 + .75 -2 = 1.75 ( I hope that's it... )
.................................................
......!!!!!!!!...................................
07:55:39 We get (4-5)^2 * 4 - 1 + 3 / 1 - 4 = (-1)^2 * 4 - 1 + 3 / 4 - 2 evaluating the term in parentheses = 1 * 4 - 1 + 3 / 4 - 2 exponentiating (2 is the exponent, which is applied to -1 rather than multiplying the 2 by 4 = 4 - 1 + 3/4 - 2 noting that 3/4 is a fraction and adding and subtracting in order we get = 1 3/4 = 7 /4 (Note that we could group the expression as 4 - 1 - 2 + 3/4 = 1 + 3/4 = 1 3/4 = 7/4). COMMON ERROR: (4 - 5) ^ 2*4 - 1 + 3 / 4 - 2 = -1 ^ 2*4 - 1 + 3 / 4-2 = -1 ^ 8 -1 + 3 / 4 - 2. INSTRUCTOR COMMENTS: There are two errors here. In the second step you can't multiply 2 * 4 because you have (-1)^2, which must be done first.? Exponentiation precedes multiplication. ? Also it isn't quite correct to write -1^2*4 at the beginning of the second step. If you were supposed to multiply 2 * 4 the expression would be (-1)^(2 * 4).? Note also that the -1 needs to be grouped because the entire expression (-1) is taken to the power.? -1^8 would be -1 because you would raise 1 to the power 8 before applying the - sign, which is effectively a multiplication by -1.?
......!!!!!!!!...................................
RESPONSE --> ok.
.................................................
?B?????y??????? Student Name: assignment #002 002. Describing Graphs
......!!!!!!!!...................................
08:25:31 `q001. You will frequently need to describe the graphs you have constructed in this course. This exercise is designed to get you used to some of the terminology we use to describe graphs. Please complete this exercise and email your work to the instructor. Problem 1. We make a table for y = 2x + 7 as follows: We construct two columns, and label the first column 'x' and the second 'y'. Put the numbers -3, -2, -1, -, 1, 2, 3 in the 'x' column. We substitute -3 into the expression and get y = 2(-3) + 7 = 1. We substitute -2 and get y = 2(-2) + 7 = 3. Substituting the remaining numbers we get y values 5, 7, 9, 11 and 13. These numbers go into the second column, each next to the x value from which it was obtained. We then graph these points on a set of x-y coordinate axes. Noting that these points lie on a straight line, we then construct the line through the points. Now make a table for and graph the function y = 3x - 4. Identify the intercepts of the graph, i.e., the points where the graph goes through the x and the y axes.
......!!!!!!!!...................................
RESPONSE --> y = 3x - 4 (if) x = -1, 0, 1,1.3333333333333332 (then) y = -7,-4, -1 , 0 y intercept is 0,-4 x intercept is 1.3333333333333332,0
.................................................
......!!!!!!!!...................................
08:27:06 The graph goes through the x axis when y = 0 and through the y axis when x = 0. The x-intercept is therefore when 0 = 3x - 4, so 4 = 3x and x = 4/3. The y-intercept is when y = 3 * 0 - 4 = -4. Thus the x intercept is at (4/3, 0) and the y intercept is at (0, -4). Your graph should confirm this.
......!!!!!!!!...................................
RESPONSE --> I just graphed this on my own paper. If there is another way to do graphs and put them on here I may need some help here.
.................................................
......!!!!!!!!...................................
08:28:15 `q002. Does the steepness of the graph in the preceding exercise (of the function y = 3x - 4) change? If so describe how it changes.
......!!!!!!!!...................................
RESPONSE --> The rise is -3 and the run is 1. (I think)
.................................................
......!!!!!!!!...................................
08:51:51 The graph forms a straight line with no change in steepness.
......!!!!!!!!...................................
RESPONSE --> Ooops.
.................................................
......!!!!!!!!...................................
09:06:57 `q003. What is the slope of the graph of the preceding two exercises (the function ia y = 3x - 4;slope is rise / run between two points of the graph)?
......!!!!!!!!...................................
RESPONSE --> Eureka. The rise is 3 and the run is 1.
.................................................
......!!!!!!!!...................................
09:08:12 Between any two points of the graph rise / run = 3. For example, when x = 2 we have y = 3 * 2 - 4 = 2 and when x = 8 we have y = 3 * 8 - 4 = 20. Between these points the rise is 20 - 2 = 18 and the run is 8 - 2 = 6 so the slope is rise / run = 18 / 6 = 3. Note that 3 is the coefficient of x in y = 3x - 4. Note the following for reference in subsequent problems: The graph of this function is a straight line. The graph increases as we move from left to right. We therefore say that the graph is increasing, and that it is increasing at constant rate because the steepness of a straight line doesn't change.
......!!!!!!!!...................................
RESPONSE --> Ok.
.................................................
......!!!!!!!!...................................
09:13:52 `q004. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> y= x^2 if x = 0, 1, 2, 3 then y = 0, 1, 4, 9 I'm not sure about the steepness. If I had a guess I would say it was increasing at an increasing rate.
.................................................
......!!!!!!!!...................................
09:14:16 Graph points include (0,0), (1,1), (2,4) and (3,9). The y values are 0, 1, 4 and 9, which increase as we move from left to right. The increases between these points are 1, 3 and 5, so the graph not only increases, it increases at an increasing rate.
......!!!!!!!!...................................
RESPONSE --> Go me.
.................................................
......!!!!!!!!...................................
09:18:43 `q005. Make a table of y vs. x for y = x^2. Graph y = x^2 between x = -3 and x = 0. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> y = x^2 x = -3, -2, -1, 0 y = 9, 4, 1, 0 I would say it is decreasing at a decreasing rate.
.................................................
......!!!!!!!!...................................
09:19:06 From left to right the graph is decreasing (points (-3,9), (-2,4), (-1,1), (0,0) show y values 9, 4, 1, 0 as we move from left to right ). The magnitudes of the changes in x from 9 to 4 to 1 to 0 decrease, so the steepness is decreasing. Thus the graph is decreasing, but more and more slowly. We therefore say that the graph is decreasing at a decreasing rate.
......!!!!!!!!...................................
RESPONSE --> Ok.
.................................................
......!!!!!!!!...................................
09:24:43 `q006. Make a table of y vs. x for y = `sqrt(x). [note: `sqrt(x) means 'the square root of x']. Graph y = `sqrt(x) between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> y = `sqrt(x) (rounded to nearest hundredth) x = 0, 1, 2, 3 y = 0, 1, 1.41,1.73 I would say the graph is increasing at a constant rate. (Just my best guess)
.................................................
......!!!!!!!!...................................
09:25:52 If you use x values 0, 1, 2, 3, 4 you will obtain graph points (0,0), (1,1), (2,1.414), (3. 1.732), (4,2). The y value changes by less and less for every succeeding x value. Thus the steepness of the graph is decreasing. The graph would be increasing at a decreasing rate.{}{} If the graph respresents the profile of a hill, the hill starts out very steep but gets easier and easier to climb. You are still climbing but you go up by less with each step, so the rate of increase is decreasing. {}{}If your graph doesn't look like this then you probably are not using a consistent scale for at least one of the axes. If your graph isn't as desribed take another look at your plot and make a note in your response indicating any difficulties.
......!!!!!!!!...................................
RESPONSE --> Ahh. Ok.
.................................................
......!!!!!!!!...................................
09:32:07 `q007. Make a table of y vs. x for y = 5 * 2^(-x). Graph y = 5 * 2^(-x) between x = 0 and x = 3. Would you say that the graph is increasing or decreasing? Does the steepness of the graph change and if so, how? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> y= 5 * 2^(-x) x= 0 , 1 , 2, 3 y= 0 ,-10,-20,-30 I would say the steepness if the graph is decreasing at a constant rate.
.................................................
......!!!!!!!!...................................
09:32:40 ** From basic algebra recall that a^(-b) = 1 / (a^b). So, for example: 2^-2 = 1 / (2^2) = 1/4, so 5 * 2^-2 = 5 * 1/4 = 5/4. 5* 2^-3 = 5 * (1 / 2^3) = 5 * 1/8 = 5/8. Etc. The decimal equivalents of the values for x = 0 to x = 3 will be 5, 2.5, 1.25, .625. These values decrease, but by less and less each time. The graph is therefore decreasing at a decreasing rate. **
......!!!!!!!!...................................
RESPONSE --> Ouch. Missed that one by a mile.
.................................................
......!!!!!!!!...................................
09:33:56 `q008. Suppose you stand still in front of a driveway. A car starts out next to you and moves away from you, traveling faster and faster. If y represents the distance from you to the car and t represents the time in seconds since the car started out, would a graph of y vs. t be increasing or decreasing? Would you say that the graph is increasing at an increasing rate, increasing at a constant rate, increasing at a decreasing rate, decreasing at an decreasing rate, decreasing at a constant rate, or decreasing at a decreasing rate?
......!!!!!!!!...................................
RESPONSE --> Increasing at an increasing rate.
.................................................
......!!!!!!!!...................................
09:34:11 ** The speed of the car increases so it goes further each second. On a graph of distance vs. clock time there would be a greater change in distance with each second, which would cause a greater slope with each subsequent second. The graph would therefore be increasing at an increasing rate. **
......!!!!!!!!...................................
RESPONSE --> Ok.
.................................................
"