Open query 10

#$&*

course MTH 163

010. `query 10

*********************************************

Question: `qquery the family of linear functions, Problem 2.

Describe the graphs of y = A f(x) for A = -.3 and A = 1.3 and compare; explain the comparison.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

For A=-.3, it is the graph of y=x stretched vertically by -.3.

For A=1.3, it is a graph of y=x vertically stretched by 1.3.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** For the basic linear function f(x) = x the A = -.3 graph is obtained by vertically stretching the y = x function by factor -.3, resulting in a straight line thru the origin with slope -.3, basic points (0,0) and (1, -.3), and

the A = 1.3 graph is obtained by vertically stretching the y = x function by factor 1.3, resulting in is a straight line thru the origin with slope 1.3, basic points (0,0) and (1, 1.3). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qdescribe the graphs of y = f(x) + c for c = .3 and c = -2.7 and compare; explain the comparison.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The slopes of these two graphs are the same, The y intercepts of the graphs differ.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graphs will have slopes identical to that of the original function, but their y intercepts will vary from -2.7 to .3. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 4. linear function y = f(x) = -1.77 x - 3.87

What are your symbolic expressions, using x1 and x2, for the corresponding y coordinates y1 and y2.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y1 = -1.77 x1 - 3.87

y2= -1.77 x2 - 3.87.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** y1 = f(x1) = -1.77 x1 - 3.87

y2 = f(x2) = -1.77 x2 - 3.87.

`dy = y2 - y1 = -1.77 x2 - 3.87 - ( -1.77 x1 - 3.87) = -1.77 x2 + 1.77 x1 - 3.87 + 3.87 = -1.77 ( x2 = x1).

Thus slope = `dy / `dx = -1.77 (x2 - x1) / (x2 - x1) = -1.77.

This is the slope of the straight line, showing that these symbolic calculations are consistent. **

STUDENT QUESTION

My question is how did you take -1.77 x2 + 1.77 x1 and get -1.77(x2 - x1)? I understand the x2-x1 but what happened to the 1.77?

INSTRUCTOR RESPONSE

This may be clearer if we work backwards:

-1.77 * (x2 - x1) = -1.77 * x2 - (-1.77 * x1) = -1.77 x2 + 1.77 x1, which is the same thing as 1.77 x1 - 1.77 x2.

-1.77 * (x2 - x1) was chosen as the form for the numerator, so we could easily divide it by x2 - x1.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 5. graphs of families for y = mx + b.

Describe your graph of the family: m = 2, b varies from -3 to 3 by step 1.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The slopes of all of the graphs will be 2. The y intercepts vary between -3 and 3 for each graph.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The graphs will all have slope 2 and will pass thru the y axis between y = -3 and y = 3.

The family will consist of all such graphs. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 6. three basic points graph of y = .5 x + 1

what are your three basic points?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(0,1)

(1,1.5)

(-2,0)

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** This is of the form y = mx + b with b= 1. So the y intercept is (0, 1).

The point 1 unit to the right is (1, 1.5).

The x-intercept occurs when y = 0, which implies .5 x + 1 = 0 with solution x = -2, so the x-intercept is (-2, 0). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 6. three basic points graph of y = .5 x + 1

What are your three basic points?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The y intercept occurs when x = 0, at which point we have y = .5 * 0 + 1 = 1. So one basic point is (0, 1).

The point 1 unit to the right of the y axis occurs at x = 1, where we get y = .5 * 1 + 1 = 1.5 to give us the second basic point (1, 1.5)

}The third point, which is not really necessary, is the x intercept, which occurs when y = 0. This gives us the equation 0 = .5 x + 1, with solution x = -2. So the third basic point is (-2, 0). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 7. simple pendulum force vs. displacement

What are your two points and what line do you get from the two points?

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I did not understand really how to do this problem. I attempted, but got off the wall answers. I did close to the same as the student response in the given solution.

------------------------------------------------

Self-critique Rating:2

*********************************************

Question: `qSTUDENT RESPONSE: The two points are (1.1, .21) and (2.0, .54).

These points give us the two simultaneous equations

.21- m(1.1) + b

.54= m(2.0) +b.

If we solve for m and b we will get our y = mx + b form.

INSTRUCTOR COMMENT:

I believe those are data points. I doubt if the best-fit line goes exactly through two data points.

In the future you should use points on your sketched line, not data points. However, we'll see how the rest of your solution goes based on these points. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

@&

&#You did not answer the given question. You need to always at least explain what you do and do not understand about the question. A phrase-by-phrase analysis is generally required when you cannot otherwise answer a question.

&#

*@

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat equation do you get from the slope and y-intercept?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = .367 x - .193

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: b= .21

m=.19

INSTRUCTOR COMMENT:

** b would be the y intercept, which is not .21 since y = .21 when x = 1.1 and the slope is nonzero.

If you solve the two equations above for m and b you obtain m = .367 and b = -.193.

This gives you equation y = mx + b or y = .367 x - .193. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat is your linear regression model?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Your linear regression model would be obtained using a graphing calculator or DERIVE. As a distance student you are not required to use these tools but you should be aware that they exist and you may need to use them in other courses. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I am not very familiar with DERIVE. I’m not sure exactly how to calculate linear regression at this point.

------------------------------------------------

Self-critique Rating:3

@& As a substitute you can sketch a graph and estimate the slope and y intercept.*@

*********************************************

Question: `qWhat force would be required to hold the pendulum 47 centimeters from its equilibrium position? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The force would be 17. You plug 47 in for x in your y = .367 x - .193 equation.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** If your model is y = .367 x - .193, with y = force and x= number of cm from equilibrium, then we have x = 47 and we get

force = y = .367 * 47 - .193 = 17 approx. The force would be 17 force units. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhy would it not make sense to ask what force would be necessary to hold the pendulum 80 meters from its equilibrium position? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Because the string is not long enough for that.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: I used the equation f= .10*47+.21

and got the answer 15.41 which would be to much force to push or pull

INSTRUCTOR COMMENT:

** The problem is that you can't hold a pendulum further at a distance greater than its length from its equilibrium point--the string isn't long enough. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qHow far could you hold the pendulum from its equilibrium position using a string with a breaking strength of 25 pounds? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

25 = .367 x - .193, which we solve to obtain

x = 68.6

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Using the model y = .367 * x - .193 with y = force = 25 lbs we get the equation

25 = .367 x - .193, which we solve to obtain

x = 69 (approx.).

Note that this displacement is also unrealistic for this pendulum. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the average rate of change associated with this model? Explain this average rate in common-sense terms.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The average rate of change is .367. This means how much the forces changes per position.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Using the model y = .367 * x - .193 with y = force and x = displacement from equilibrium we can use any two (x, y) points to get the rate of change. In all cases we will get rate of change = change in y / change in x = .367.

The change in y is the change in the force, while the change in x is the change in position. The rate of change therefore tells us how much the force changes per unit of change in position (e.g., the force increases by 15 pounds for every inch of displacement). **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the average slope associated with this model? Explain this average slope in common-sense terms.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The slope is .367. It is equal to the average rate of change.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Using the model y = .367 * x - .193 with y = force and x = displacement from equilibrium the average slope is .367. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qAs you gradually pull the pendulum from a point 30 centimeters from its equilibrium position to a point 80 centimeters from its equilibrium position, what average force must you exert?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** if it was possible to pull the pendulum back this far and if the model applies you will get

Force at 30 cm: y = .367 * 30 - .193 = 10.8 approx. and

Force at 80 cm: y = .367 * 80 - .193 = 29 approx. so that

ave force between 30 cm and 80 cm is therefore

(10.8 + 29) / 2 = 20 approx.. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I am not really sure how to do this, I just don’t understand where each number would go into the equation.

------------------------------------------------

Self-critique Rating:

@& What does the line

'Force at 30 cm: y = .367 * 30 - .193 = 10.8'

tell you?

In your model y was force and x was length. So if you're given a length you substittute it for x and figure out the result.*@

*********************************************

Question: `qquery problem 8. flow range

What is the linear function range(time)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = -16/15x + 98

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT RESPONSE: I obtained model one by drawing a line through the data points and picking two points on the line and finding the slope between them. I then substituted this value for m and used one of my data points on my line for the x and y value and solved for b. the line I got was range(t) = -.95t + 112.38.

y = -16/15x + 98

INSTRUCTOR COMMENT:

This looks like a good model.

According to the instructions it should however be expressed as range(time) = -16/15 * time + 98. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the significance of the average rate of change? Explain this average rate in common-sense terms.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

This is change in range/change in time.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** the average rate of change is change in range / change in clock time. The average rate of change indicates the average rate at which range in cm is changing with respect to clock time in sec, i.e., the average number of cm / sec at which the range changes. Thus the average rate tells us how fast, on the average, the range changes. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the average slope associated with this model? Explain this average slope in common-sense terms.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The average slope is equal to the average rate of change.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** it's the average rate at which the range of the flow changes--the average rate at which the position of the end of the stream changes. It's the speed with which the point where the stream reaches the ground moves across the ground. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 9. If your total wealth at clock time t = 0 hours is $3956, and you earn $8/hour for the next 10 hours, then what is your total wealth function totalWealth( t ), where t is time in hours?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 8t + 3956 .

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Total wealth has to be expressed in terms of t. A graph of total wealth vs. t would have y intercept 3956, since that is the t = 0 value, and slope 8, since slope represents change in total wealth / change in t, i.e., the number of dollars per hour.

A graph with y-intercept b and slope m has equation y = m t + b. Thus we have

totalWealth(t) = 8 * t + 3956 . **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qAt what clock time will your total wealth reach $4000? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

4000 = 8 x + 3956

=5.5 hours

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE:

To find the clock time when my total wealth will reach 4000 I solved the equation totalWealth(t) = 4000. The value I got when I solved for t was t = 5.5 hours.

4.4 hours needed to reach 4000 4000 = 10x + 3956

INSTRUCTOR COMMENT:

Almost right. You should solve 4000 = 8 x + 3956, obtaining 5.5 hours. This is equivalent to solving totalWealth(t) = 4000 = 8 t + 3956, which is the more meaningful form of the relationship. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the meaning of the slope of your graph?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The slope is that rate at which the money is earned.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

GOOD STUDENT RESPONSE: The slope of the graph shows the steady rate at which money is earned on an hourly basis. It shows a steady increase in wealth.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 10. Experience shows that when a certain widget is sold for $30, a certain store can expect to sell 200 widgets per week, while a selling price of $28 increases the number sold to 300.

What linear function numberSold(price) describes this situation?

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

The linear function that describes this is

200=28p+300

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 10. Experience shows that when a certain widget is sold for $30, a certain store can expect to sell 200 widgets per week, while a selling price of $28 increases the number sold to 300.

What linear function numberSold(price) describes this situation?

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qIf you make a graph of y = numberSold vs. x = price you have graph points (30, 200) and (28, 300). You need the equation of the straight line through these points.

You plug these coordinates into the form y = m x + b and solve for m and b. Or you can use another method. Whatever method you use you get y = -50 x + 1700.

Then to put this into the notation of the problem you write numberSold(price) instead of y and price instead of x.

You end up with the equation

numberSold(price) = -50 * price + 1700. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qIf the store must meet a quota by selling 220 units per week, what price should they set? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

220 = -50p + 1700

which you can solve to get

price = 30

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** If the variables are y and x, you know y so you can solve for x.

For the function numberSold(price) = -50 * price + 1700 you substitute 220 for numbersold(price) and solve for price.

You get the equation

220 = -50 * price + 1700

which you can solve to get

price = 30, approx. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qIf each widget costs the store $25, then how much total profit will be expected from selling prices of $28, $29 and $30? what equation did you solve to obtain this result?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE:

If each widget costs the store $25, then they should expect to earn a profit of 300 dollars from a selling price of $28, 250 dollars from a price of $29 and 200 dollars from a price of $30. To find this I solved the equations numberSold(28); numberSold(29), and numberSold(30). Solving for y after putting the price values in for p.

They will sell 300, 250 and 200 widgets, respectively (found by solving the given equation).

To get the total profit you have to multiply the number of widgets by the profit per widget. At $28 the profit per widgit is $3 and the total profit is $3 * 300 = $900; at $30 the profit per widgit is $5 and 200 are sold for profit $1000; at $29 what happens? **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

I’m lost at this point. I thought I knew wha tIw as doing but as I get further, I’m confused. I don’t even know what to tell you about what I do know and don’t know. I just don’t know any of it. Well the only thing I know is that it neess to be in the form of y=mx+b

@& For the model you got in the preceding y was the total profit and y was the number of widgets,

Consider the solution to a preceding problem: You should review that problem and that solution, which read in part:

'If you make a graph of y = numberSold vs. x = price you

have graph points (30, 200) and (28, 300). You need the equation of

the straight line through these points.'

Now find the equation:

If you plug the coordinate of the first point into the equation y = m x + b what do you get?

If you do the same for the second point what do you get?

You now have two equations with unknowns m and b. Solve for m and b, using the methods you learned at the very beginning of the course.*@

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 11. quadratic function depth(t) = .01 t^2 - 2t + 100 representing water depth vs.

What is the equation of the straight line connecting the t = 20 point of the graph to the t = 60 point?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

y = -1.2 t + 88

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The t = 20 point is (20,64) and the t = 60 point is (60, 16), so the slope is (-48 / 20) = -1.2.

This can be plugged into the form y = m t + b to get y = -1.2 t + b.

Then plugging in the x and y coordinates of either point you get b = 88.

y = -1.2 t + 88 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 13. quadratic depth function y = depth(t) = .01 t^2 - 2t + 100.

What is `dy / `dt based on the two time values t = 30 sec and t = 40 sec.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-1.3 cm / sec.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** For t = 30 we have y = 49 and for t = 40 we have y = 36.

The slope between (30, 49) and (40,36) is (36 - 49) / (40 - 30) = -1.3.

This tells you that the depth is changing at an average rate of -1.3 cm / sec. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat is `dy / `dt based on t = 30 sec and t = 31 sec.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-1.39

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Based on t = 30 and t = 31 the value for `dy / `dt is -1.39, following the same steps as before **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat is `dy / `dt based on t = 30 sec and t = 30.1 sec.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-1.399

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** STUDENT RESPONSE: The value for 'dy / `dt based on t = 30 sec and t = 30.1 sec is -1.4

INSTRUCTOR COMMENT:

** Right if you round off the answer. However the answer shouldn't be rounded off. Since you are looking at a progression of numbers (-1.3, -1.39, and this one) and the differences in these numbers get smaller and smaller, you have to use a precision that will always show you the difference. Exact values are feasible here and shoud be used. I believe that this one comes out to -1.399. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat do you think you would get for `dy / `dt if you continued this process?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

-1.4 I believe would be the last.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

STUDENT RESPONSE: An even more and more accurate slope value. I don't think it would have to continue to decrease.

INSTRUCTOR COMMENT

**If you look at the sequence -1.3, -1.39, -1.399, ..., what do you think happens?

It should be apparent that the limiting value is -1.4 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat does the linear function tell you?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It tells you the depth change at the clock time.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The function tells you that at any clock time t the rate of depth change is given by the function .02 t - 2.

For t = 30, for example, this gives us .02 * 30 - 2 = -1.4, which is the rate we obtained from the sequence of calculations above. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 14. linear function y = f(x) = .37 x + 8.09

.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat are the first five terms of the basic sequence {f(n), n = 1, 2, 3, ...} for this function.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

8.46, 8.83, 9.2, 9.57, 9.94

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The first five terms are 8.46, 8.83, 9.2, 9.57, and 9.94 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the pattern of these numbers?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

They each increase by .37.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** These numbers increase by .37 at each interval. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qIf you didn't know the equation for the function, how would you go about finding the 100th member of the sequence? How can you tell your method is valid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

99*.37. And you would add that to the first result.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You could find the 100th member by noting that you have 99 ‘jumps’ between the first number and the 100 th, each ‘jump’ being .37.

Multiplying 99 times .37 and then adding the result to the 'starting value' (8.46). STUDENT RESPONSE: simply put 100 as the x in the formula .37x +8.09

INSTRUCTOR COMMENT: That's what you do if you have the equation.

Given just the numbers you could find the 100th member by multiplying 99 times .37 and then adding the result to the first value 8.46. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qfor quadratic function y = g(x) = .01 x^2 - 2x + 100 what are the first five terms of the basic sequence {g(n), n = 1, 2, 3, ...}?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

98.01, 96.04, 94.09, 92.16, 90.25

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** We have

g(1) = .01 * 1^2 - 2 * 1 + 100 = 98.01

g(2) = .01 * 2^2 - 2 * 2 + 100 = 96.04,

etc.

The first 5 terms are therefore {98.01, 96.04, 94.09, 92.16, 90.25}

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is the pattern of these numbers?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It changes by 0.02 each time.

confidence rating #$&*:3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The changes in these numbers are -1.97, -1.95, -1.93, -1.91. With each interval of x, the change in y is .02 greater than for the previous interval. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qIf you didn't know the equation for the function, how would you go about finding the next three members of the sequence?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

You could add .02.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** According to the pattern established above, the next three changes are -1.89, -1.87, -1.85. This gives us

g(6) = g(5) - 1.89, g(7) = g(6) - 1.87, g(7) = g(6) - 1.85. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qHow can you verify that your method is valid?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

You can verify it with the formula.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You can verify the result using the original formula; if you evaluate it at 5, 6 and 7 it should confirm your results.

That's the best answer that can be given at this point.

You should understand, though that even if you verified it for the first million terms, that wouldn't really prove it (who knows what might happen at the ten millionth term, or whatever). It turns out that to prove it would require calculus or the equivalent. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 15. The difference equation a(n+1) = a(n) + .4, a(1) = 5

If you substitute n = 1 into a(n+1) = a(n) + .4, how do you determine a(2)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a(1) = 5 So a(2) = 5.4

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You get a(1+1) = a(1) + .4, or

a(2) = a(1) + .4.

Knowing a(1) = 5 you get a(2) = 5.4. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `q If you substitute n = 2 into a(n+1) = a(n) + .4 how do you determine a(3)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

a(3) = 5.4 + .4 = 5.8.

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You have to do the substitution.

You get a(2+1) = a(2) + .4, or since 2 + 1 = 3, a(3) = a(2) + .4

Then knowing a(2) = 5.4 you get a(3) = 5.4 + .4 = 5.8. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qIf you substitute n = 3 into a(n+1) = a(n) + .4, how do you determine a(4)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

5.8 + .4 = 6.2

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** We get a(4) = a(3) +.4 = 5.8 + .4 = 6.2 **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat is a(100)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

5 + 99*.4 = 44.6

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** a(100) would be equal to a(1) plus 99 jumps of .4, or 5 + 99*.4 = 44.6. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 17. difference equation a(n+1) = a(n) + 2 n, a(1) = 4.

What is the pattern of the sequence?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It increases by even numbers, 2, 4, 6, 8, 10, 12, etc..

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** For n = 1 we have n+1 = 2 so that the equation

• a(n+1) = a(n) + 2 n

becomes

• a(2) = a(1) + 2 * 1

Since a(1) = 4 (this was given) we have

• a(2) = a(1) + 2 * 1 = 4 + 2 = 6.

Reasoning similarly, n = 2 gives us

• a(3) = a(2) + 2 * 2 = 6 + 4 = 10.

n = 3 gives us

• a(4) = a(3) + 2 * 3 = 10 + 6 = 16; etc.

The sequence is 4, 6, 10, 16, 24, 34, ... . **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qWhat kind of function do you think a(n) is (e.g., linear, quadratic, exponential, etc.)?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Quadratic

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The differences of the sequence are 4, 6, 8, 10, 12, . . ..

The difference change by the same amount each time, which is a property of quadratic functions. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery the slope = slope equation

Explain the logic of the slope = slope equation (your may take a little time on this one)

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The slope is the rise/run between two points. The slope equation is the slope of the entire line.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The slope = slope equation sets the slope between two given points equal to the slope between one of those points and the variable point (x, y).

Since all three points lie on the same straight line, the slope between any two of the three points must be equal to the slope between any other pair. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 7. streamRange(t), 50 centimeters at t = 20 seconds, range changes by -10 centimeters over 5 seconds.

what is your function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(t) = -2t + 90

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The rate at which streamRange changes is change in streamRange / change in t = -10 cm / (5 sec) = -2 cm/s. This will be the slope m of the graph.

Since streamRange is 50 cm when t = 20 sec the point (20, 50) lies on the graph. So the graph passes through (20, 50) and has slope -2.

The function is therefore of the form y = m t + b with m = -2, and b such that 50 = -2 * 20 + b. Thus b = 90.

The function is therefore y = -2 t + 90, or using the meaningful name of the function

steamRange(t) = -2t + 90

You need to use function notation. y = f(x) = -2x + 90 would be OK, or just f(x) = -2x + 90. The point is that you need to give the funcion a name.

Another idea here is that we can use the 'word' streamRange to stand for the function. If you had 50 different functions and, for example, called them f1, f2, f3, ..., f50 you wouldn't remember which one was which so none of the function names would mean anything. If you call the function streamRange it has a meaning. Of course shorter words are sometimes preferable; just understand that function don't have to be confined to single letters and sometimes it's not a bad idea to make the names easily recognizable.

STUDENT RESPONSE:

y = -2x + 50

INSTRUCTOR COMMENT:

** At t = 20 sec this would give you y = -2 * 20 + 50 = 10. But y = 50 cm when t = 20 sec.

Slope is -10 cm / (5 sec) = -2 cm/s, so you have y = -2 t + b.

Plug in y = 50 cm and t = 20 sec and solve for b.

You get b = 90 cm.

The equation is y = -2 t + 90, or

streamRange(t) = -2t + 90. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qwhat is the clock time at which the stream range first falls to 12 centimeters?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

t = 39 sec.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Using the correct equation streamRange(t) = -2t + 90, you would set streamRange(t) = 12 and solve 12 = -2t + 90, obtaining t = 39 sec. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qquery problem 9. equation of the straight line through t = 5 sec and the t = 7 sec points of the quadratic function depth(t) = .01 t^2 - 2t + 100

What is the slope and what does it tell you about the depth function?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Y= -1.88 t + 104

confidence rating #$&*:1

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** You have to get the whole equation. y = m t + b is now y = -1.88 t + b. You have to solve for b. Plug in the coordinates of the t = 7 point and find b.

You get 90.9 = -1.88 * 7 + b so b = 104, approximately. Find the correct value.

The equation will end up something like y = depth(t) = -1.88 t + 104. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qThe slope of the linear function is -1.88. This tells me that the depth is decreasing as the time is increasing at a rate of 1.88 cm per sec.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qHow closely does the linear function approximate the quadratic function at each of the given times?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

08, .03. 0. -.01, 0, .03 are the deivations, so very close.

confidence rating #$&*:

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** The deviations are for t = 3, 4, 5, 6, 7, & 8 as follows: .08, .03. 0. -.01, 0, .03. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qat what t value do we obtain the closest values?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

T=6. It is .01

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** Not counting t= 5 and t = 7, which are 0, the next closest t value is t = 6, the deviation for this is -.01. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

*********************************************

Question: `qOn which side of the t = 5 and t = 7 points is the linear approximation closer to the quadratic function? On which side does the quadratic function 'curve away' from the linear most rapidly?

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

T=4 is closer.

It curves away on the x side.

confidence rating #$&*:2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

** On the t = 4 side the approximation is closer. The quadratic function curves away on the positive x side. **

Query Add comments on any surprises or insights you experienced as a result of this assignment.

The slope = slope helped me out a lot. Learning that I can solve a linear in different ways was helpful.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique Rating:

STUDENT COMMENT

I found the difference equation to be a bit challenge to comprehend (it seems it can get pretty complicated) but very

exciting as well. I'm still not entirely sure what uses it will have in the future, but it seems like an important concept to have

for future reference.

INSTRUCTOR RESPONSE

The difference equation is a way of specifying how a quantity changes, step by step.

There are numerous situations in which all was know is the initial value of a quantity and the rules for how it changes.

• For example when water flows from a hole in the bottom of a uniform cylinder, it is the depth of water that determines how fast it comes out.

• All we know, then, is the initial depth of the water and the rule for how quickly the depth changes.

• It turns out that we can approximate the behavior of the depth function using the difference equation y(n+1) = y(n) - k * sqrt(y(n)), where k is a constant number determined by the diameter of the cylinder.

If you continue your study of mathematics you will eventually get to the fourth semester of the standard calculus sequence, a course entitled 'Introduction to Ordinary Differential Equations'. Most second-semester calculus courses also include a briefer introduction to the subject.

Your exposure to difference equations in this course will be usefu helpful to you when you reach that point.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

STUDENT COMMENT

I found the difference equation to be a bit challenge to comprehend (it seems it can get pretty complicated) but very

exciting as well. I'm still not entirely sure what uses it will have in the future, but it seems like an important concept to have

for future reference.

INSTRUCTOR RESPONSE

The difference equation is a way of specifying how a quantity changes, step by step.

There are numerous situations in which all was know is the initial value of a quantity and the rules for how it changes.

• For example when water flows from a hole in the bottom of a uniform cylinder, it is the depth of water that determines how fast it comes out.

• All we know, then, is the initial depth of the water and the rule for how quickly the depth changes.

• It turns out that we can approximate the behavior of the depth function using the difference equation y(n+1) = y(n) - k * sqrt(y(n)), where k is a constant number determined by the diameter of the cylinder.

If you continue your study of mathematics you will eventually get to the fourth semester of the standard calculus sequence, a course entitled 'Introduction to Ordinary Differential Equations'. Most second-semester calculus courses also include a briefer introduction to the subject.

Your exposure to difference equations in this course will be usefu helpful to you when you reach that point.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

@& Check my notes, and if they don't lead you to solutions you're welcome to submit a copy of my notes along with your additional questions and/or responses.

*@