#$&*

course MTH 163

If your solution to stated problem does not match the given solution, you should self-critique per instructions at http://vhcc2.vhcc.edu/dsmith/geninfo/labrynth_created_fall_05/levl1_22/levl2_81/file3_259.htm.

Your solution, attempt at solution. If you are unable to attempt a solution, give a phrase-by-phrase interpretation of the problem along with a statement of what you do or do not understand about it. This response should be given, based on the work you did in completing the assignment, before you look at the given solution.

022. `query 22

*********************************************

Question: `qExplain why the function y = x^-p has a vertical asymptote at x = 0.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

Because it approaches the vertical limit. As x gets closer to 0, x^-p gets closer to 0 as well.

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** x^-p = 1 / x^p.

As x gets closer to 0, x^p gets closer to 0. Dividing 1 by a number which gets closer and closer to 0 gives us a result

with larger and larger magnitude.

There is no limit to how close x can get to 0, so there is no limit to how many times x^p can divide into 1.

This results in y = x^p values that approach infinite distance from the x axis. The graph therefore approaches a vertical limit. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qExplain why the function y = (x-h)^-p has a vertical asymptote at x = h.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(x-h)^-p = 1 / (x-h)^p

the asymptote that’s at x = 0 shifts to x = h

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** (x-h)^-p = 1 / (x-h)^p.

As x gets closer to h, (x-h)^p gets closer to 0. Dividing 1 by a number which gets closer and closer to 0 gives us a result with larger and larger magnitude.

There is no limit to how close x can get to h, so there is no limit to how many times (x-h)^p can divide into 1.

This results in y = (x-h)^p values that approach infinite distance from the x axis as x approaches h. The graph therefore approaches a vertical limit.

This can also be seen as a horizontal shift of the y = x^-p function. Replacing x by x - h shifts the graph h units in the x direction, so the asymptote at x = 0 shifts to x = h. **

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qExplain why the function y = (x-h)^-p is identical to that of x^-p except for the shift of h units in the x direction.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

It is the same y values at different positions of x and then you have the shift of h as well.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`aSTUDENT ANSWER: You end up with the exact same y values but at the different position of x changed by the h value.

INSTRUCTOR COMMENT: Good start. More specifically the x value at which a given y value occurs is shifted h

units, so that for example y = x^p is zero when x = 0, but y = (x - h)^p is zero when x = h.

To put this as a series of questions (you are welcome to insert answers to these questions, using #$&* before and after each insertion)::

Assume that p is positive.

For what value of x is x^p equal to zero?

For what value of x is (x - 5)^p equal to zero?

For what value of x is (x - 1)^p equal to zero?

For what value of x is (x - 12)^p equal to zero?

For what value of x is (x - h)^p equal to zero?

For example, the figure below depicts the p = 3 power functions x^3, (x-1)^3 and (x-5)^3.

Assume now that p is negative.

For what value of x does the graph of y = x^p have a vertical asymptote?

For what value of x does the graph of y = (x-1)^p have a vertical asymptote?

For what value of x does the graph of y = (x-5)^p have a vertical asymptote?

For what value of x does the graph of y = (x-12)^p have a vertical asymptote?

For what value of x does the graph of y = (x-h)^p have a vertical asymptote?

For example, the figure below depicts the p = -3 power functions x^-3 and (x-5)^-3.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qGive your table (increment .4) showing how the y = x^-3 function can be transformed first into y = (x - .4) ^ -3, then into y = -2 (x - .4) ^ -3, and finally into y = -2 (x - .4) ^ -3 + .6.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

x y = x^3 y = (x-0.4)^(-3) y = -2 (x-0.4)^(-3) y = -2 (x-0.4)^(-3) + .6

-0.8 -1.953 -0.579 1.16 1.76

-0.4 -15.625 -1.953 3.90 4.50

0 -15.625 31.25 32.85

0.4 15.625

0.8 1.953 15.625 -31.25 -30.65

confidence rating #$&*: 2

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The table is as follows (note that column headings might not line up correctly with the columns):

x y = x^3 y = (x-0.4)^(-3) y = -2 (x-0.4)^(-3) y = -2 (x-0.4)^(-3) + .6

-0.8 -1.953 -0.579 1.16 1.76

-0.4 -15.625 -1.953 3.90 4.50

0 div by 0 -15.625 31.25 32.85

0.4 15.625 div by 0 div by 0 div by 0

0.8 1.953 15.625 -31.25 -30.65

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qExplain how your table demonstrates this transformation and describe the graph that depicts the transformation.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

X^3 shifts 0.4 units to the right and has the x axis as the horizontal asymptote

The next one stretches the graph vertically by -2. The x axis is the horizontal asymptote.

The last shifts it 6 units to the positive side. The horizontal asymptote is x=6.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a

y = x^-3 transforms into y = (x - .4)^-3, shifting the basic points .4 unit to the right. The vertical asymptote at the y axis (x = 0) shifts to the vertical line x = .4. The x axis is a horizontal asymptote.

y = -2 (x - .4)^-3 vertically stretches the graph by factor -2, moving every point twice as far from the x axis and also to the opposite side of the x axis. This leaves the vertical line x = .4 as a vertical asymptote. The x axis remains a horizontal asymptote.

y = -2 ( x - .4)^-3 + 6 vertically shifts the graph +6 units. This has the effect of maintaining the shape of the graph but raising the horizontal asymptote to x = 6.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qDescribe your graphs of y = x ^ .5 and y = 3 x^.5. Describe how your graph depicts the ratios of y values between the two functions.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

(0, 0), (.5, .707), (1, 1), (2, 1.414) are the basic points for the first one. The graph increases at a decreasing rate.

For the last one, (0, 0), (.5, 2.12), (1, 3) and (2, 4.242). The graph increases at a decreasing rate.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a*&*& This is a power function y = x^p with p = .5.

The basic points of y = x^.5 are (0, 0), (.5, .707), (1, 1), (2, 1.414).

• Attempting to find a basic point at x = -1 we find that -1^-.5 is not a real number, leading us to the conclusion that y = x^.5 is not defined for negative values of x.

• The graph therefore begins at the origin and increases at a decreasing rate.

• However since we can make x^.5 as large as we wish by making x sufficiently large, there is no horizontal asymptote.

y = 3 x^.5 vertically stretches the graph of y = x^.5 by factor 3, giving us basic points (0, 0), (.5, 2.12), (1, 3) and (2, 4.242).

• This graph is also increasing at a decreasing rate, staying 3 times as far from the x axis as the graph of the original y = x^.5.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

*********************************************

Question: `qExplain why the graph of A f(x-h) + k is different than the graph of A [ f(x-h) + k ], and describe the difference.

YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY

Your solution:

The first is vertically stretched by A and shifted horizontally by h and shifts vertically by k.

The last is first shifted horizontally by h and then vertically by k and then it is stretched by A.

confidence rating #$&*: 3

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

.............................................

Given Solution:

`a** The first graph is obtained from y = f(x) by first vertically stretching by factor A, then horizontall shifting h units and finally vertically shifting k units.

The graph of A [f(x-h) + k] is obtained by first doing what is in brackets, horizontally shifting h units then vertically shifting k units before doing the vertical stretch by factor A. Thus the vertical stretch applies to the vertical shift in addition to the values of the function. This results in different y coordinates and a typically a very different graph.

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Query Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

Query Add comments on any surprises or insights you experienced as a result of this assignment.

"

Self-critique (if necessary):

------------------------------------------------

Self-critique rating:

#*&!

&#Very good work. Let me know if you have questions. &#