Assignment 7

course PHY 121

’y¥«Á·Ö«ö»ÚŒ’ÉÙ‘Öî×Student Name:

Your work has been received. Please scroll through the document to see any inserted notes (inserted at the appropriate place in the document, in boldface) and a note at the end. The note at the end of the file will confirm that the file has been reviewed; be sure to read that note. If there is no note at the end, notify the instructor through the Submit Work form, and include the date of the posting to your access page.

assignment #007

.................................................

......!!!!!!!!...................................

16:30:21 `q001. We obtain an estimate of the acceleration of gravity by determining the slope of an acceleration vs. ramp slope graph for an object gliding down an incline. Sample data for an object gliding down a 50-cm incline indicate that the object glides down the incline in 5 seconds when the raised end of the incline is .5 cm higher than the lower end; the time required from rest is 3 seconds when the raised end is 1 cm higher than the lower end; and the time from rest is 2 seconds when the raised end is 1.5 cm higher than the lower end. What is the acceleration for each trial?

......!!!!!!!!...................................

RESPONSE --> I need to see an example first...

.................................................

......!!!!!!!!...................................

16:37:09 We can find the accelerations either using equations or direct reasoning. To directly reason the acceleration for the five-second case, we note that the average velocity in this case must be 50 cm/(5 seconds) = 10 cm/s. Since the initial velocity was 0, assuming uniform acceleration we see that the final velocity must be 20 cm/second, since 0 cm/s and 20 cm/s average out to 10 cm/s. This implies a velocity change of 20 cm/second a time interval of 5 seconds, or a uniform acceleration of 20 cm/s / (5 s) = 4 cm/s^2. The acceleration in the 3-second case could also be directly reasoned, but instead we will note that in this case we have the initial velocity v0 = 0, the time interval `dt = 3 sec, and the displacement `ds = 50 cm. We can therefore find the acceleration from the equation `ds = v0 `dt + .5 a `dt^2. Noting first that since v0 = 0 the term v0 `dt must also be 0,we see that in this case the equation reduces to `ds = .5 a `dt^2. We easily solve for the acceleration, obtaining a = 2 `ds / `dt^2. In this case we have a = 2 * (50 cm) / (3 sec)^2 = 11 cm/s^2 (rounded to nearest cm/s^2). For the 2-second case we can use the same formula, obtaining a = 2 * (50 cm) / (2 sec)^2 = 25 cm/s^2.

......!!!!!!!!...................................

RESPONSE --> When we get inot the a = part I start to get confused...where does the 1 cm and 1.5 cm go??? we didn't use them or is it becasue each time the change was .5cm?

The height of the end of the ramp is not part of the calculation of acceleration. You know the object started from rest, you know its displacement along the ramp and you know the time required. This is what you use to calculate the acceleration.

.................................................

......!!!!!!!!...................................

16:39:14 For the 5-second trial, where acceleration was 4 cm/s^2, the 'rise' of the ramp was .5 cm and the 'run' was nearly equal to the 50-cm length of the ramp so the slope was very close to .5 cm / (50 cm) = .01. For the 3-second trial, where acceleration was 11 cm/s^2, the 'rise' of the ramp was 1 cm and the 'run' was very close to the 50-cm length, so the slope was very close to 1 cm / (50 cm) = .02. For the 2-second trial, where the acceleration was 25 cm/s^2, the slope is similarly found to be very close to 1.5 cm / (50 cm) = .03.

......!!!!!!!!...................................

RESPONSE --> Ok I see where theose umbers come into play...I forgot all about rise over run when I read slope

.................................................

......!!!!!!!!...................................

16:40:26 `q003. Sketch a reasonably accurate graph of acceleration vs. ramp slope and give a good description and interpretation of the graph. Be sure to include in your description how the graph points seem to lie with respect to the straight line that comes as close as possible, on the average, to the three points.

......!!!!!!!!...................................

RESPONSE --> i know the lines are going to run very close to each other...and each one will be a little higher than the previous

.................................................

......!!!!!!!!...................................

16:43:12 The graph will have acceleration in cm/s^2 on the vertical axis (the traditional y-axis) and ramp slope on the horizontal axis (the traditional x-axis). The graph points will be (.01, 4 cm/s^2), (.02, 11.1 cm/s^2), (.03, 25 cm/s^2). The second point lies somewhat lower than a line connecting the first and third points, so the best possible line will probably be lower than the first and third points but higher than the second. The graph indicates that acceleration increases with increasing slope, which should be no surprise. It is not clear from the graph whether a straight line is in fact the most appropriate model for the data. If timing wasn't particularly accurate, these lines could easily be interpreted as being scattered from the actual linear behavior due to experimental errors. Or the graph could indicate acceleration vs. ramp slope behavior that is increasing at an increasing rate.

......!!!!!!!!...................................

RESPONSE --> I see where how we are plugging the numbers in...it it hard to remeber the equations and hwat represents what...will we the equations on the tests so we do not get confused?

Do you understand the graph that was described here? If not tell me exactly what you do and do not understand about this description. You should end up with a graph on your paper.

You will need to know the equations of motion.

There are only four equations of uniformly accelerated motion. You need to memorize them and be sure you know how to do the algebra, which it appears you do.

.................................................

......!!!!!!!!...................................

17:09:24 `q004. Carefully done experiments show that for small slopes (up to a slope of about .1) the graph appears to be linear or very nearly so. This agrees with theoretical predictions of what should happen. Sketch a vertical line at x = .05. Then extend the straight line you sketched previously until it intersects the y axis and until it reaches past the vertical line at x = .05. What are the coordinates of the points where this line intersects the y-axis, and where it intersects the x =.05 line? What are the rise and the run between these points, and what therefore is the slope of your straight line?

......!!!!!!!!...................................

RESPONSE --> (.01, 4 cm/s^2), (.02, 11.1 cm/s^2), (.03, 25 cm/s^2) I don't know what to do here...I still don't understand how to build the graoh without the information right in fron of me

.................................................

......!!!!!!!!...................................

17:10:19 A pretty good straight line goes through the points (0, -6 cm/s^2) and (.05, 42 cm/s^2). Your y coordinates might differ by a few cm/s^2 either way. For the coordinates given here, the rise is from -6 cm/s^2 to 42 cm/s^2, a rise of 48 cm/s^2. The run is from 0 to .05, a run of .05. The slope of the straight line is approximately 48 cm/s^2 / .05 = 960 cm/s^2. Note that this is pretty close to the accepted value, 980 cm/second^2, of gravity. Carefully done, this experiment will give us a very good estimate of the acceleration of gravity.

......!!!!!!!!...................................

RESPONSE --> Where did these numbers come from? I don't know if there was a problem to solve?

With the previously-described graph on your paper, you should be able to verify that the above description is reasonable.

.................................................

......!!!!!!!!...................................

17:20:33 `q005. The most accurate way to measure the acceleration of gravity is to use the relationship T = 2 `pi / `sqrt(g) * `sqrt(L) for the period of a pendulum. Use your washer pendulum and time 100 complete back-and-forth cycles of a pendulum of length 30 cm. Be sure to count carefully and don't let the pendulum swing out to a position more than 10 degrees from vertical. How long did it take, and how long did each cycle therefore last?

......!!!!!!!!...................................

RESPONSE --> It took two minutes and 17 with seconds with mu clock and the timer says 127.9063. I will divide to get how long each cycle took. Each cycle was 1.2791 seconds

.................................................

......!!!!!!!!...................................

17:21:23 100 cycles of a pendulum of this length should require approximately 108 seconds. This would be 108 seconds per 100 cycles, or 108 sec / (100 cycles) = 1.08 sec / cycle. If you didn't count very carefully or didn't time very accurately, you might differ significantly from this result; differences of up to a couple of cycles are to be expected.

......!!!!!!!!...................................

RESPONSE --> Mine took a little longer

.................................................

......!!!!!!!!...................................

17:23:56 `q006. You now have values for the period T and the length L, so you can use the relationship T = 2 `pi / `sqrt(g) * `sqrt(L) to find the acceleration g of gravity. Solve the equation for g and then use your values for T and L to determine the acceleration of gravity.

......!!!!!!!!...................................

RESPONSE --> I see the equation but where do I sue the time?

.................................................

......!!!!!!!!...................................

17:25:38 Solving T = 2 `pi / `sqrt(g) * `sqrt(L) for g, we can first multiply both sides by `sqrt(g) to obtain T * `sqrt(g) = 2 `pi `sqrt(L). Then dividing both sides by T we obtain `sqrt(g) = 2 `pi `sqrt(L) / T. Squaring both sides we finally obtain {}g = 4 `pi^2 L / T^2. Plugging in the values given here, L = 30 cm and T = 1.08 sec, we obtain g = 4 `pi^2 * 30 cm / (1.08 sec)^2 = 1030 cm/s^2. You should check these calculations for accuracy, since they were mentally approximated.

......!!!!!!!!...................................

RESPONSE --> holy cow...I am not so sure I undersatnd this.I see the plug-ins but it is hard for me to see how when we multiply both sides we lose one of the quantities. I have lots of trouble reasoning out math.

Have you written the equation out on paper, and tried to do the solution?

You'll be glad to know the algebra doesn't get any harder than what you've seen here in the first couple of weeks.

.................................................

"

You are having some problems with this assignment. See my notes and please ask some more questions if they don't help you clarify things.