#$&*
course Mth 152 I tried to shorten the document to make it easier to read and follow, at least for myself. Question: `q003. If you are earning 8 dollars / hour, how long will it take you to earn $72? The answer may well be obvious, but explain as best you can how you reasoned out your result.YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY.............................................
Given Solution: (8 + 3) * 5 and 8 + 3 * 5 To evaluate (8 + 3) * 5, you will first do the calculation in parentheses. 8 + 3 = 11, so (8 + 3) * 5 = 11 * 5 = 55. To evaluate 8 + 3 * 5 you have to decide which operation to do first, 8 + 3 or 3 * 5. You should be familiar with the order of operations, which tells you that multiplication precedes addition. The first calculation to do is therefore 3 * 5, which is equal to 15. Thus 8 + 3 * 5 = 8 + 15 = 23 The results are different because the grouping in the first expression dictates that the addition be done first. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3
********************************************* Question: `q005. Calculate (2^4) * 3 and 2^(4 * 3), indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. Note that the symbol '^' indicates raising to a power. For example, 4^3 means 4 raised to the third power, which is the same as 4 * 4 * 4 = 64. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 48 & 4096. Order of operations are important in this question. Always do whats in the parentheses first and then move on to the ouside. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^.............................................
Given Solution: To evaluate (2^4) * 3 we first evaluate the grouped expression 2^4, which is the fourth power of 2, equal to 2 * 2 * 2 * 2 = 16. So we have (2^4) * 3 = 16 * 3 = 48. To evaluate 2^(4 * 3) we first do the operation inside the parentheses, obtaining 4 * 3 = 12. We therefore get 2^(4 * 3) = 2^12 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 4096. It is easy to multiply by 2, and the powers of 2 are important, so it's appropriate to have asked you to do this problem without using a calculator. Had the exponent been much higher, or had the calculation been, say, 3^12, the calculation would have become tedious and error-prone, and the calculator would have been recommended. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ********************************************* Question: `q006. Calculate 3 * 5 - 4 * 3 ^ 2 and 3 * 5 - (4 * 3)^2 according to the standard order of operations, indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -21 & -129. The order of operations say that you have to fill out the problems within the parentheses before moving on, and then raise the power. The first question went straight for the power being first in the order. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To calculate 3 * 5 - 4 * 3 ^ 2, the first operation is the exponentiation operation ^. The two numbers involved in the exponentiation are 3 and 2; the 4 is 'attached' to the 3 by multiplication, and this multiplication can't be done until the exponentiation has been performed. The exponentiation operation is therefore 3^2 = 9, and the expression becomes 3 * 5 - 4 * 9. Evaluating this expression, the multiplications 3 * 5 and 4 * 9 must be performed before the subtraction. 3 * 5 = 15 and 4 * 9 = 36 so we now have 3 * 5 - 4 * 3 ^ 2 = 3 * 5 - 4 * 9 = 15 - 36 = -21. To calculate 3 * 5 - (4 * 3)^2 we first do the operation in parentheses, obtaining 4 * 3 = 12. Then we apply the exponentiation to get 12 ^2 = 144. Finally we multiply 3 * 5 to get 15. Putting this all together we get 3 * 5 - (4 * 3)^2 = 3 * 5 - 12^2 = 3 * 5 - 144 = 15 - 144 = -129. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3
question 7-9 pass. Liberal Arts Math. ********************************************* Question: `q010. If you divide a certain positive number by 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: It is equal to the original number. A number can not be divided by 1 unless it divides itself, which then it will become 1. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^.............................................
Given Solution: If you divide any number by 1, the result is the same as the original number. Doesn't matter what the original number is, if you divide it by 1, you don't change it. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ********************************************* Question: `q011. If you divide a certain positive number by a number greater than 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: It is lesser, since it will calculate lower numbers that can turn into the original number. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you split something up into equal parts, the more parts you have, the less will be in each one. Dividing a positive number by another number is similar. The bigger the number you divide by, the less you get. Now if you divide a positive number by 1, the result is the same as your original number. So if you divide the positive number by a number greater than 1, what you get has to be smaller than the original number. Again it doesn't matter what the original number is, as long as it's positive. Students will often reason from examples. For instance, the following reasoning might be offered: OK, let's say the original number is 36. Let's divide 36 be a few numbers and see what happens: 36/2 = 18. Now 3 is bigger than 2, and 36 / 3 = 12. The quotient got smaller. Now 4 is bigger than 3, and 36 / 4 = 9. The quotient got smaller again. Let's skip 5 because it doesn't divide evenly into 36. 36 / 6 = 4. Again we divided by a larger number and the quotient was smaller. I'm convinced. That is a pretty convincing argument, mainly because it is so consistent with our previous experience. In that sense it's a good argument. It's also useful, giving us a concrete example of how dividing by bigger and bigger numbers gives us smaller and smaller results. However specific examples, however convincing and however useful, don't actually prove anything. The argument given at the beginning of this solution is general, and applies to all positive numbers, not just the specific positive number chosen here. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3
********************************************* Question: `q012. If you divide a certain positive number by a positive number less than 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Aslong as the number is positive, it will be lesser if the original number is greater. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^.............................................
Given Solution: If you split something up into equal parts, the more parts you have, the less will be in each one. Dividing a positive number by some other number is similar. The bigger the number you divide by, the less you get. The smaller the number you divide by, the more you get. Now if you divide a positive number by 1, the result is the same as your original number. So if you divide the positive number by a positive number less than 1, what you get has to be larger than the original number. Again it doesn't matter what the original number is, as long as it's positive. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok #### It took me a minute to understand, and had to glance at the given solution to be sure I understood before I answered. ------------------------------------------------ Self-critique Rating: 3
" Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&! `gr31#$&* course Mth 152 I tried to shorten the document to make it easier to read and follow, at least for myself. Question: `q003. If you are earning 8 dollars / hour, how long will it take you to earn $72? The answer may well be obvious, but explain as best you can how you reasoned out your result.YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY
.............................................
Given Solution: (8 + 3) * 5 and 8 + 3 * 5 To evaluate (8 + 3) * 5, you will first do the calculation in parentheses. 8 + 3 = 11, so (8 + 3) * 5 = 11 * 5 = 55. To evaluate 8 + 3 * 5 you have to decide which operation to do first, 8 + 3 or 3 * 5. You should be familiar with the order of operations, which tells you that multiplication precedes addition. The first calculation to do is therefore 3 * 5, which is equal to 15. Thus 8 + 3 * 5 = 8 + 15 = 23 The results are different because the grouping in the first expression dictates that the addition be done first. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q005. Calculate (2^4) * 3 and 2^(4 * 3), indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. Note that the symbol '^' indicates raising to a power. For example, 4^3 means 4 raised to the third power, which is the same as 4 * 4 * 4 = 64. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: 48 & 4096. Order of operations are important in this question. Always do whats in the parentheses first and then move on to the ouside. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To evaluate (2^4) * 3 we first evaluate the grouped expression 2^4, which is the fourth power of 2, equal to 2 * 2 * 2 * 2 = 16. So we have (2^4) * 3 = 16 * 3 = 48. To evaluate 2^(4 * 3) we first do the operation inside the parentheses, obtaining 4 * 3 = 12. We therefore get 2^(4 * 3) = 2^12 = 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 = 4096. It is easy to multiply by 2, and the powers of 2 are important, so it's appropriate to have asked you to do this problem without using a calculator. Had the exponent been much higher, or had the calculation been, say, 3^12, the calculation would have become tedious and error-prone, and the calculator would have been recommended. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok ********************************************* Question: `q006. Calculate 3 * 5 - 4 * 3 ^ 2 and 3 * 5 - (4 * 3)^2 according to the standard order of operations, indicating the order of your steps. Explain, as best you can, the reasons for the difference in your results. YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: -21 & -129. The order of operations say that you have to fill out the problems within the parentheses before moving on, and then raise the power. The first question went straight for the power being first in the order. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: To calculate 3 * 5 - 4 * 3 ^ 2, the first operation is the exponentiation operation ^. The two numbers involved in the exponentiation are 3 and 2; the 4 is 'attached' to the 3 by multiplication, and this multiplication can't be done until the exponentiation has been performed. The exponentiation operation is therefore 3^2 = 9, and the expression becomes 3 * 5 - 4 * 9. Evaluating this expression, the multiplications 3 * 5 and 4 * 9 must be performed before the subtraction. 3 * 5 = 15 and 4 * 9 = 36 so we now have 3 * 5 - 4 * 3 ^ 2 = 3 * 5 - 4 * 9 = 15 - 36 = -21. To calculate 3 * 5 - (4 * 3)^2 we first do the operation in parentheses, obtaining 4 * 3 = 12. Then we apply the exponentiation to get 12 ^2 = 144. Finally we multiply 3 * 5 to get 15. Putting this all together we get 3 * 5 - (4 * 3)^2 = 3 * 5 - 12^2 = 3 * 5 - 144 = 15 - 144 = -129. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 question 7-9 pass. Liberal Arts Math. ********************************************* Question: `q010. If you divide a certain positive number by 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: It is equal to the original number. A number can not be divided by 1 unless it divides itself, which then it will become 1. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you divide any number by 1, the result is the same as the original number. Doesn't matter what the original number is, if you divide it by 1, you don't change it. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ********************************************* Question: `q011. If you divide a certain positive number by a number greater than 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: It is lesser, since it will calculate lower numbers that can turn into the original number. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you split something up into equal parts, the more parts you have, the less will be in each one. Dividing a positive number by another number is similar. The bigger the number you divide by, the less you get. Now if you divide a positive number by 1, the result is the same as your original number. So if you divide the positive number by a number greater than 1, what you get has to be smaller than the original number. Again it doesn't matter what the original number is, as long as it's positive. Students will often reason from examples. For instance, the following reasoning might be offered: OK, let's say the original number is 36. Let's divide 36 be a few numbers and see what happens: 36/2 = 18. Now 3 is bigger than 2, and 36 / 3 = 12. The quotient got smaller. Now 4 is bigger than 3, and 36 / 4 = 9. The quotient got smaller again. Let's skip 5 because it doesn't divide evenly into 36. 36 / 6 = 4. Again we divided by a larger number and the quotient was smaller. I'm convinced. That is a pretty convincing argument, mainly because it is so consistent with our previous experience. In that sense it's a good argument. It's also useful, giving us a concrete example of how dividing by bigger and bigger numbers gives us smaller and smaller results. However specific examples, however convincing and however useful, don't actually prove anything. The argument given at the beginning of this solution is general, and applies to all positive numbers, not just the specific positive number chosen here. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): OK ------------------------------------------------ Self-critique Rating: 3 ********************************************* Question: `q012. If you divide a certain positive number by a positive number less than 1, is the result greater than the original number, less than the original number or equal to the original number, or does the answer to this question depend on the original number? YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY Your solution: Aslong as the number is positive, it will be lesser if the original number is greater. confidence rating #$&*: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.............................................
Given Solution: If you split something up into equal parts, the more parts you have, the less will be in each one. Dividing a positive number by some other number is similar. The bigger the number you divide by, the less you get. The smaller the number you divide by, the more you get. Now if you divide a positive number by 1, the result is the same as your original number. So if you divide the positive number by a positive number less than 1, what you get has to be larger than the original number. Again it doesn't matter what the original number is, as long as it's positive. &&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&& Self-critique (if necessary): Ok #### It took me a minute to understand, and had to glance at the given solution to be sure I understood before I answered. ------------------------------------------------ Self-critique Rating: 3 " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: " Self-critique (if necessary): ------------------------------------------------ Self-critique rating: #*&!